A Jain, A V Metrikine, M J M M Steenbergen, K N van Dalen
{"title":"铁路过渡区:关键负载条件下新型过渡结构的能量评估。","authors":"A Jain, A V Metrikine, M J M M Steenbergen, K N van Dalen","doi":"10.1007/s42417-024-01707-3","DOIUrl":null,"url":null,"abstract":"<p><p>Railway transition zones (RTZs) are subjected to amplified degradation leading to high maintenance costs and reduced availability of tracks for operation. Over the years, several mitigation measures have been investigated to deal with the amplified degradation of these zones. However, to ensure the robustness of a design solution, it must be evaluated for critical conditions arising due to certain loading and track conditions. In this paper, the critical load conditions arising due to different velocities (sub-critical, critical and super-critical), the direction of the moving load, the combination of inertial effects and track imperfections (non-straight rail and hanging sleepers) and passage of multiple axles (using a comprehensive vehicle model) are investigated for an embankment-bridge transition. The results are then compared against the recently proposed design of a transition structure called SHIELD (Safe Hull Inspired Energy Limiting Design) to evaluate its performance under these critical conditions using various vehicle models and finite element models of the RTZs. It was found that the novel design of the transition structure effectively mitigates dynamic amplifications and results in smooth strain energy distribution across sub-critical, critical, and super-critical velocity regimes in both directions of movement implying that the expected operation-induced degradation will be as uniform as possible in longitudinal direction. Furthermore, even though this transition structure is designed to deal with initial track conditions (perfectly straight track), its superior performance is not confined to tracks in perfect condition; it also efficiently addresses adverse effects from track imperfections such as hanging sleepers and non-straight rail. In the end, this work demonstrates the robustness of the design solution for all the critical conditions under study.</p>","PeriodicalId":48786,"journal":{"name":"Journal of Vibration Engineering & Technologies","volume":"13 1","pages":"15"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849309/pdf/","citationCount":"0","resultStr":"{\"title\":\"Railway Transition Zones: Energy Evaluation of a Novel Transition Structure for Critical Loading Conditions.\",\"authors\":\"A Jain, A V Metrikine, M J M M Steenbergen, K N van Dalen\",\"doi\":\"10.1007/s42417-024-01707-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Railway transition zones (RTZs) are subjected to amplified degradation leading to high maintenance costs and reduced availability of tracks for operation. Over the years, several mitigation measures have been investigated to deal with the amplified degradation of these zones. However, to ensure the robustness of a design solution, it must be evaluated for critical conditions arising due to certain loading and track conditions. In this paper, the critical load conditions arising due to different velocities (sub-critical, critical and super-critical), the direction of the moving load, the combination of inertial effects and track imperfections (non-straight rail and hanging sleepers) and passage of multiple axles (using a comprehensive vehicle model) are investigated for an embankment-bridge transition. The results are then compared against the recently proposed design of a transition structure called SHIELD (Safe Hull Inspired Energy Limiting Design) to evaluate its performance under these critical conditions using various vehicle models and finite element models of the RTZs. It was found that the novel design of the transition structure effectively mitigates dynamic amplifications and results in smooth strain energy distribution across sub-critical, critical, and super-critical velocity regimes in both directions of movement implying that the expected operation-induced degradation will be as uniform as possible in longitudinal direction. Furthermore, even though this transition structure is designed to deal with initial track conditions (perfectly straight track), its superior performance is not confined to tracks in perfect condition; it also efficiently addresses adverse effects from track imperfections such as hanging sleepers and non-straight rail. In the end, this work demonstrates the robustness of the design solution for all the critical conditions under study.</p>\",\"PeriodicalId\":48786,\"journal\":{\"name\":\"Journal of Vibration Engineering & Technologies\",\"volume\":\"13 1\",\"pages\":\"15\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849309/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration Engineering & Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42417-024-01707-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration Engineering & Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42417-024-01707-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Railway Transition Zones: Energy Evaluation of a Novel Transition Structure for Critical Loading Conditions.
Railway transition zones (RTZs) are subjected to amplified degradation leading to high maintenance costs and reduced availability of tracks for operation. Over the years, several mitigation measures have been investigated to deal with the amplified degradation of these zones. However, to ensure the robustness of a design solution, it must be evaluated for critical conditions arising due to certain loading and track conditions. In this paper, the critical load conditions arising due to different velocities (sub-critical, critical and super-critical), the direction of the moving load, the combination of inertial effects and track imperfections (non-straight rail and hanging sleepers) and passage of multiple axles (using a comprehensive vehicle model) are investigated for an embankment-bridge transition. The results are then compared against the recently proposed design of a transition structure called SHIELD (Safe Hull Inspired Energy Limiting Design) to evaluate its performance under these critical conditions using various vehicle models and finite element models of the RTZs. It was found that the novel design of the transition structure effectively mitigates dynamic amplifications and results in smooth strain energy distribution across sub-critical, critical, and super-critical velocity regimes in both directions of movement implying that the expected operation-induced degradation will be as uniform as possible in longitudinal direction. Furthermore, even though this transition structure is designed to deal with initial track conditions (perfectly straight track), its superior performance is not confined to tracks in perfect condition; it also efficiently addresses adverse effects from track imperfections such as hanging sleepers and non-straight rail. In the end, this work demonstrates the robustness of the design solution for all the critical conditions under study.
期刊介绍:
Journal of Vibration Engineering & Technologies provides a medium of communication among scientists and engineers engaged in research and development in the field of vibration engineering. It features original papers, in-depth reviews, experimental tests and results, design ideas and application papers of direct relevance to the industry. The journal promotes the objectives of the Vibration Institute of India for creating better awareness about the benefits of vibration analysis in assessing machinery health.