Arash Shirvani, Purusha Shirvani, Ugochukwu Jonah, Brian E Moore, Michael F Holick
{"title":"疑似线粒体功能障碍和复杂病理生理学在致命的高移动性 Ehlers-Danlos 综合征中的应用:从病例报告和尸检结果中获得的启示。","authors":"Arash Shirvani, Purusha Shirvani, Ugochukwu Jonah, Brian E Moore, Michael F Holick","doi":"10.3390/biomedicines13020469","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Hypermobile Ehlers-Danlos Syndrome (hEDS) is a complex connective tissue disorder with multi-systemic manifestations that significantly impact quality of life. This case report investigates the clinical course and molecular mechanisms of advanced hEDS through an in-depth case study and post-mortem findings. <b>Methods:</b> The clinical history of a 24-year-old patient with advanced hEDS was analyzed, focusing on progressive complications across multiple systems. Post-mortem examination and genetic analysis were performed to elucidate the underlying pathophysiology. <b>Results:</b> The patient's clinical course was marked by gastrointestinal, neurological, and immune complications requiring numerous surgical interventions. Post-mortem findings revealed severe gastrointestinal dysmotility and Alzheimer's Type II astrocytes. Genetic analysis identified variants in mtDNA genes ATP6, CYB, and ND, suggesting a potential role of impaired mitochondrial function in hEDS pathogenesis but requiring further validation through functional studies. <b>Conclusions:</b> This case report provides valuable insights into the potential role of mitochondrial dysfunction in advanced hEDS and highlights the need for further research in this area. Future studies should include comprehensive functional assays, longitudinal tissue sampling, family genetic analyses, and muscle biopsies to better understand the complex interplay between genetic factors, mitochondrial function, and clinical manifestations in hEDS. Establishing genetic bases and developing targeted therapies addressing both structural and metabolic aspects are crucial. The patient's legacy offers invaluable information that could significantly contribute to enhancing diagnostic accuracy and developing personalized treatment strategies for this challenging disorder, potentially leading to better care for individuals living with hEDS.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852713/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suspected Mitochondrial Dysfunction and Complex Pathophysiology in Fatal Hypermobile Ehlers-Danlos Syndrome: Insights from a Case Report and Post-Mortem Findings.\",\"authors\":\"Arash Shirvani, Purusha Shirvani, Ugochukwu Jonah, Brian E Moore, Michael F Holick\",\"doi\":\"10.3390/biomedicines13020469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> Hypermobile Ehlers-Danlos Syndrome (hEDS) is a complex connective tissue disorder with multi-systemic manifestations that significantly impact quality of life. This case report investigates the clinical course and molecular mechanisms of advanced hEDS through an in-depth case study and post-mortem findings. <b>Methods:</b> The clinical history of a 24-year-old patient with advanced hEDS was analyzed, focusing on progressive complications across multiple systems. Post-mortem examination and genetic analysis were performed to elucidate the underlying pathophysiology. <b>Results:</b> The patient's clinical course was marked by gastrointestinal, neurological, and immune complications requiring numerous surgical interventions. Post-mortem findings revealed severe gastrointestinal dysmotility and Alzheimer's Type II astrocytes. Genetic analysis identified variants in mtDNA genes ATP6, CYB, and ND, suggesting a potential role of impaired mitochondrial function in hEDS pathogenesis but requiring further validation through functional studies. <b>Conclusions:</b> This case report provides valuable insights into the potential role of mitochondrial dysfunction in advanced hEDS and highlights the need for further research in this area. Future studies should include comprehensive functional assays, longitudinal tissue sampling, family genetic analyses, and muscle biopsies to better understand the complex interplay between genetic factors, mitochondrial function, and clinical manifestations in hEDS. Establishing genetic bases and developing targeted therapies addressing both structural and metabolic aspects are crucial. The patient's legacy offers invaluable information that could significantly contribute to enhancing diagnostic accuracy and developing personalized treatment strategies for this challenging disorder, potentially leading to better care for individuals living with hEDS.</p>\",\"PeriodicalId\":8937,\"journal\":{\"name\":\"Biomedicines\",\"volume\":\"13 2\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852713/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomedicines13020469\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13020469","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Suspected Mitochondrial Dysfunction and Complex Pathophysiology in Fatal Hypermobile Ehlers-Danlos Syndrome: Insights from a Case Report and Post-Mortem Findings.
Background/Objectives: Hypermobile Ehlers-Danlos Syndrome (hEDS) is a complex connective tissue disorder with multi-systemic manifestations that significantly impact quality of life. This case report investigates the clinical course and molecular mechanisms of advanced hEDS through an in-depth case study and post-mortem findings. Methods: The clinical history of a 24-year-old patient with advanced hEDS was analyzed, focusing on progressive complications across multiple systems. Post-mortem examination and genetic analysis were performed to elucidate the underlying pathophysiology. Results: The patient's clinical course was marked by gastrointestinal, neurological, and immune complications requiring numerous surgical interventions. Post-mortem findings revealed severe gastrointestinal dysmotility and Alzheimer's Type II astrocytes. Genetic analysis identified variants in mtDNA genes ATP6, CYB, and ND, suggesting a potential role of impaired mitochondrial function in hEDS pathogenesis but requiring further validation through functional studies. Conclusions: This case report provides valuable insights into the potential role of mitochondrial dysfunction in advanced hEDS and highlights the need for further research in this area. Future studies should include comprehensive functional assays, longitudinal tissue sampling, family genetic analyses, and muscle biopsies to better understand the complex interplay between genetic factors, mitochondrial function, and clinical manifestations in hEDS. Establishing genetic bases and developing targeted therapies addressing both structural and metabolic aspects are crucial. The patient's legacy offers invaluable information that could significantly contribute to enhancing diagnostic accuracy and developing personalized treatment strategies for this challenging disorder, potentially leading to better care for individuals living with hEDS.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.