{"title":"依赖生命阶段的行为模拟了一种地下专性食草动物的化学感觉剧目多样性。","authors":"Kyle J Paddock, Jacob A Corcoran","doi":"10.1093/g3journal/jkaf041","DOIUrl":null,"url":null,"abstract":"<p><p>Insects rely on the translation of environmental chemical cues into behaviors necessary for survival and reproduction. Specific chemosensory receptors belonging to the odorant and gustatory receptor groups detect odorant and gustatory cues, respectively, making them crucial to these processes. How odorant (OR) and gustatory (GR) receptor expression profiles change in combination with changing life strategies is not well understood. Using genomic and transcriptomic resources we annotated the OR and GR expression profiles across all life stages of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, a major pest of corn in the US and Europe. Genomic analyses identified 193 ORs and 189 GRs, of which 125 and 116 were found to be expressed, respectively, in one or more WCR life stages. WCR larvae are subterranean and feed on roots before emerging as adults aboveground. Expression profile analyses revealed first instar larvae possess a unique OR and GR repertoire distinct from other instars and adults, suggesting a role in host plant finding. Similarly, a subset of ORs and GRs differed in their expression levels between adult male and female antennae. By comparing the phylogenetic relationship of ORs and GRs, we identified several receptors with potentially important roles in WCR foraging and reproductive behavior. Together, this study provides support for future investigations into the ecology and evolution of chemoreception in insects.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life-stage dependent behavior mimics chemosensory repertoire diversity in a belowground, specialist herbivore.\",\"authors\":\"Kyle J Paddock, Jacob A Corcoran\",\"doi\":\"10.1093/g3journal/jkaf041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insects rely on the translation of environmental chemical cues into behaviors necessary for survival and reproduction. Specific chemosensory receptors belonging to the odorant and gustatory receptor groups detect odorant and gustatory cues, respectively, making them crucial to these processes. How odorant (OR) and gustatory (GR) receptor expression profiles change in combination with changing life strategies is not well understood. Using genomic and transcriptomic resources we annotated the OR and GR expression profiles across all life stages of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, a major pest of corn in the US and Europe. Genomic analyses identified 193 ORs and 189 GRs, of which 125 and 116 were found to be expressed, respectively, in one or more WCR life stages. WCR larvae are subterranean and feed on roots before emerging as adults aboveground. Expression profile analyses revealed first instar larvae possess a unique OR and GR repertoire distinct from other instars and adults, suggesting a role in host plant finding. Similarly, a subset of ORs and GRs differed in their expression levels between adult male and female antennae. By comparing the phylogenetic relationship of ORs and GRs, we identified several receptors with potentially important roles in WCR foraging and reproductive behavior. Together, this study provides support for future investigations into the ecology and evolution of chemoreception in insects.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkaf041\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkaf041","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Life-stage dependent behavior mimics chemosensory repertoire diversity in a belowground, specialist herbivore.
Insects rely on the translation of environmental chemical cues into behaviors necessary for survival and reproduction. Specific chemosensory receptors belonging to the odorant and gustatory receptor groups detect odorant and gustatory cues, respectively, making them crucial to these processes. How odorant (OR) and gustatory (GR) receptor expression profiles change in combination with changing life strategies is not well understood. Using genomic and transcriptomic resources we annotated the OR and GR expression profiles across all life stages of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, a major pest of corn in the US and Europe. Genomic analyses identified 193 ORs and 189 GRs, of which 125 and 116 were found to be expressed, respectively, in one or more WCR life stages. WCR larvae are subterranean and feed on roots before emerging as adults aboveground. Expression profile analyses revealed first instar larvae possess a unique OR and GR repertoire distinct from other instars and adults, suggesting a role in host plant finding. Similarly, a subset of ORs and GRs differed in their expression levels between adult male and female antennae. By comparing the phylogenetic relationship of ORs and GRs, we identified several receptors with potentially important roles in WCR foraging and reproductive behavior. Together, this study provides support for future investigations into the ecology and evolution of chemoreception in insects.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.