Caleb Henderson, David Haak, Hillary Mehl, Sanaz Shafian, David McCall
{"title":"利用无人驾驶飞行器和全球导航卫星系统喷雾器技术对百慕大草春季枯斑进行精确测量和处理","authors":"Caleb Henderson, David Haak, Hillary Mehl, Sanaz Shafian, David McCall","doi":"10.1007/s11119-025-10231-7","DOIUrl":null,"url":null,"abstract":"<p>Spring dead spot is a disease of bermudagrass (<i>Cynodon dactylon</i> L. Pers) caused by <i>Ophiosphaerella spp</i>., of fungi which infect the below ground structures of plants, causing damage to the turf canopy. Previous research suggests that precision management strategies based on manually identified disease within unmanned aerial vehicle (UAV) imagery using GIS software and global navigation satellite systems (GNSS)-equipped sprayers can reduce the fungicide required for spring dead spot management. However, this methodology is time consuming and impractical for golf course superintendents. This paper introduces a novel approach to spring dead spot identification utilizing a custom Python script, the Simple Ophiosphaerella Damage Detector (SODD), to identify and record locations of spring dead spot from UAV imagery using basic feature extraction techniques. Initial tests comparing the outputs from SODD to spring dead spot manually identified by researchers on four fairways, comparisons of K-means cluster maps showed similarities ranging between 71 and 88% although incidence counts were inconsistent. Precision treatment methods based on SODD were evaluated across 16 golf course fairways at three locations in Virginia organized as a randomized complete-block design with four replications and four treatment methods; spot and zonal treatments based on SODD identified incidence and density, respectively, compared against full-coverage and non-treated controls. Applications were made with a Toro Multipro5800 with GeoLink GNSS-equipped sprayer in Fall of 2021. Spot and zonal treatment strategies showed similar control to full-coverage applications (<i>p</i>≤0.001) while reducing the percentage of the fairways treated by 48% and 52%, respectively (<i>p</i>≤0.001). These results highlight the capabilities for SODD as a tool for disease map generation.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"15 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision mapping and treatment of spring dead spot in bermudagrass using unmanned aerial vehicles and global navigation satellite systems sprayer technology\",\"authors\":\"Caleb Henderson, David Haak, Hillary Mehl, Sanaz Shafian, David McCall\",\"doi\":\"10.1007/s11119-025-10231-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spring dead spot is a disease of bermudagrass (<i>Cynodon dactylon</i> L. Pers) caused by <i>Ophiosphaerella spp</i>., of fungi which infect the below ground structures of plants, causing damage to the turf canopy. Previous research suggests that precision management strategies based on manually identified disease within unmanned aerial vehicle (UAV) imagery using GIS software and global navigation satellite systems (GNSS)-equipped sprayers can reduce the fungicide required for spring dead spot management. However, this methodology is time consuming and impractical for golf course superintendents. This paper introduces a novel approach to spring dead spot identification utilizing a custom Python script, the Simple Ophiosphaerella Damage Detector (SODD), to identify and record locations of spring dead spot from UAV imagery using basic feature extraction techniques. Initial tests comparing the outputs from SODD to spring dead spot manually identified by researchers on four fairways, comparisons of K-means cluster maps showed similarities ranging between 71 and 88% although incidence counts were inconsistent. Precision treatment methods based on SODD were evaluated across 16 golf course fairways at three locations in Virginia organized as a randomized complete-block design with four replications and four treatment methods; spot and zonal treatments based on SODD identified incidence and density, respectively, compared against full-coverage and non-treated controls. Applications were made with a Toro Multipro5800 with GeoLink GNSS-equipped sprayer in Fall of 2021. Spot and zonal treatment strategies showed similar control to full-coverage applications (<i>p</i>≤0.001) while reducing the percentage of the fairways treated by 48% and 52%, respectively (<i>p</i>≤0.001). These results highlight the capabilities for SODD as a tool for disease map generation.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-025-10231-7\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10231-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Precision mapping and treatment of spring dead spot in bermudagrass using unmanned aerial vehicles and global navigation satellite systems sprayer technology
Spring dead spot is a disease of bermudagrass (Cynodon dactylon L. Pers) caused by Ophiosphaerella spp., of fungi which infect the below ground structures of plants, causing damage to the turf canopy. Previous research suggests that precision management strategies based on manually identified disease within unmanned aerial vehicle (UAV) imagery using GIS software and global navigation satellite systems (GNSS)-equipped sprayers can reduce the fungicide required for spring dead spot management. However, this methodology is time consuming and impractical for golf course superintendents. This paper introduces a novel approach to spring dead spot identification utilizing a custom Python script, the Simple Ophiosphaerella Damage Detector (SODD), to identify and record locations of spring dead spot from UAV imagery using basic feature extraction techniques. Initial tests comparing the outputs from SODD to spring dead spot manually identified by researchers on four fairways, comparisons of K-means cluster maps showed similarities ranging between 71 and 88% although incidence counts were inconsistent. Precision treatment methods based on SODD were evaluated across 16 golf course fairways at three locations in Virginia organized as a randomized complete-block design with four replications and four treatment methods; spot and zonal treatments based on SODD identified incidence and density, respectively, compared against full-coverage and non-treated controls. Applications were made with a Toro Multipro5800 with GeoLink GNSS-equipped sprayer in Fall of 2021. Spot and zonal treatment strategies showed similar control to full-coverage applications (p≤0.001) while reducing the percentage of the fairways treated by 48% and 52%, respectively (p≤0.001). These results highlight the capabilities for SODD as a tool for disease map generation.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.