Microbial-induced calcite precipitation (MICP) is an environmentally friendly treatment method for soil improvement. When combined with carbon fiber (CF), MICP can enhance the liquefaction resistance of sand. In this study, the effects of CF content (relative to the sand weight of 0%, 0.2%, 0.3%, and 0.4%) on the liquefaction resistance of MICP-treated silica and calcareous sand were investigated. The analysis was conducted using bacterial retention test, cyclic triaxial (CTX) test, LCD optical microscope, and scanning electron microscopy (SEM). The results showed that with the increase in CF content, the bacterial retention rate increased. Additionally, the cumulative cycles of axial strain to 5%, excess pore water pressure to initial liquefaction, as well as strength and stiffness, all increased with higher CF content. This trend continued up to the CF content of 0.2% for silica sand and 0.3% for calcareous sand, beyond which the cumulative cycles began to decrease. The great mechanical system of CF, calcite, and sand particles was significantly strengthened after MICP-treated. However, the reinforced calcite did not completely cover the CF, and excess CF hindered the connection between sand grains. The optimal amount of CF in silica and calcareous sands were 0.2% and 0.3%. This study provides valuable guidance for selecting the optimal CF content in the future MICP soil engineering.