iRadiology Pub Date : 2024-12-18 DOI:10.1002/ird3.113
Han Yuan
{"title":"Anatomic Boundary-Aware Explanation for Convolutional Neural Networks in Diagnostic Radiology","authors":"Han Yuan","doi":"10.1002/ird3.113","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Convolutional neural networks (CNN) have achieved remarkable success in medical image analysis. However, unlike some general-domain tasks where model accuracy is paramount, medical applications demand both accuracy and explainability due to the high stakes affecting patients' lives. Based on model explanations, clinicians can evaluate the diagnostic decisions suggested by CNN. Nevertheless, prior explainable artificial intelligence methods treat medical image tasks akin to general vision tasks, following end-to-end paradigms to generate explanations and frequently overlooking crucial clinical domain knowledge.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We propose a plug-and-play module that explicitly integrates anatomic boundary information into the explanation process for CNN-based thoracopathy classifiers. To generate the anatomic boundary of the lung parenchyma, we utilize a lung segmentation model developed on external public datasets and deploy it on the unseen target dataset to constrain model explanations within the lung parenchyma for the clinical task of thoracopathy classification.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Assessed by the intersection over union and dice similarity coefficient between model-extracted explanations and expert-annotated lesion areas, our method consistently outperformed the baseline devoid of clinical domain knowledge in 71 out of 72 scenarios, encompassing 3 CNN architectures (VGG-11, ResNet-18, and AlexNet), 2 classification settings (binary and multi-label), 3 explanation methods (Saliency Map, Grad-CAM, and Integrated Gradients), and 4 co-occurred thoracic diseases (Atelectasis, Fracture, Mass, and Pneumothorax).</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We underscore the effectiveness of leveraging radiology knowledge in improving model explanations for CNN and envisage that it could inspire future efforts to integrate clinical domain knowledge into medical image analysis.</p>\n </section>\n </div>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"3 1","pages":"47-60"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.113","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iRadiology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird3.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景卷积神经网络(CNN)在医学图像分析领域取得了巨大成功。然而,与一些模型准确性至关重要的一般领域任务不同,医疗应用对准确性和可解释性都有很高的要求,因为这关系到病人的生命。根据模型的解释,临床医生可以评估 CNN 提出的诊断建议。然而,先前的可解释人工智能方法在处理医学图像任务时与处理一般视觉任务类似,都是按照端到端范式生成解释,往往忽略了关键的临床领域知识。 方法 我们提出了一种即插即用模块,可将解剖学边界信息明确整合到基于 CNN 的胸廓病分类器的解释过程中。为了生成肺实质的解剖学边界,我们利用在外部公共数据集上开发的肺分割模型,并将其部署在未见的目标数据集上,以限制模型在肺实质内的解释,从而完成胸廓病分类的临床任务。 结果 通过模型提取的解释与专家标注的病变区域之间的交集大于联合和骰子相似系数进行评估,我们的方法在 72 个场景中的 71 个场景中始终优于没有临床领域知识的基线方法、其中包括 3 种 CNN 架构(VGG-11、ResNet-18 和 AlexNet)、2 种分类设置(二元和多标签)、3 种解释方法(Saliency Map、Grad-CAM 和 Integrated Gradients)以及 4 种同时出现的胸部疾病(胸腔积液、骨折、肿块和气胸)。 结论 我们强调了利用放射学知识改进 CNN 模型解释的有效性,并设想这将激励未来将临床领域知识整合到医学图像分析中的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anatomic Boundary-Aware Explanation for Convolutional Neural Networks in Diagnostic Radiology

Background

Convolutional neural networks (CNN) have achieved remarkable success in medical image analysis. However, unlike some general-domain tasks where model accuracy is paramount, medical applications demand both accuracy and explainability due to the high stakes affecting patients' lives. Based on model explanations, clinicians can evaluate the diagnostic decisions suggested by CNN. Nevertheless, prior explainable artificial intelligence methods treat medical image tasks akin to general vision tasks, following end-to-end paradigms to generate explanations and frequently overlooking crucial clinical domain knowledge.

Methods

We propose a plug-and-play module that explicitly integrates anatomic boundary information into the explanation process for CNN-based thoracopathy classifiers. To generate the anatomic boundary of the lung parenchyma, we utilize a lung segmentation model developed on external public datasets and deploy it on the unseen target dataset to constrain model explanations within the lung parenchyma for the clinical task of thoracopathy classification.

Results

Assessed by the intersection over union and dice similarity coefficient between model-extracted explanations and expert-annotated lesion areas, our method consistently outperformed the baseline devoid of clinical domain knowledge in 71 out of 72 scenarios, encompassing 3 CNN architectures (VGG-11, ResNet-18, and AlexNet), 2 classification settings (binary and multi-label), 3 explanation methods (Saliency Map, Grad-CAM, and Integrated Gradients), and 4 co-occurred thoracic diseases (Atelectasis, Fracture, Mass, and Pneumothorax).

Conclusions

We underscore the effectiveness of leveraging radiology knowledge in improving model explanations for CNN and envisage that it could inspire future efforts to integrate clinical domain knowledge into medical image analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information White Matter Hyperintensities: Cerebral Small-Vessel Diseases and White Matter Microstructural Impairments Incidental Finding of Deep Vein Thrombosis on Routine Knee Magnetic Resonance Imaging Physician Attitudes About Ultrasound-Guided Procedures Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1