{"title":"在三量子比特 NMR 量子处理器中对多方纠缠的 ANN 增强检测","authors":"Vaishali Gulati, Shivanshu Siyanwal, Arvind, Kavita Dorai","doi":"10.1007/s11128-025-04696-8","DOIUrl":null,"url":null,"abstract":"<div><p>We use an artificial neural network (ANN) model to identify the entanglement class of an experimentally generated three-qubit pure state drawn from one of the six inequivalent classes under stochastic local operations and classical communication (SLOCC). The ANN model is also able to detect the presence of genuinely multipartite entanglement (GME) in the state. We apply data science techniques to reduce the dimensionality of the problem, which corresponds to a reduction in the number of required density matrix elements to be computed. The ANN model is first trained on a simulated dataset containing randomly generated states and is later tested and validated on noisy experimental three-qubit states cast in the canonical form and generated on a nuclear magnetic resonance (NMR) quantum processor. We benchmark the ANN model via support vector machines (SVMs) and K-nearest neighbor (KNN) algorithms and compare the results of our ANN-based entanglement classification with existing three-qubit SLOCC entanglement classification schemes such as 3-tangle and correlation tensors. Our results demonstrate that the ANN model can perform GME detection and SLOCC class identification with high accuracy, using a priori knowledge of only a few density matrix elements as inputs. Since the ANN model works well with a reduced input dataset, it is an attractive method for entanglement classification in real-life situations with limited experimental data sets.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANN-enhanced detection of multipartite entanglement in a three-qubit NMR quantum processor\",\"authors\":\"Vaishali Gulati, Shivanshu Siyanwal, Arvind, Kavita Dorai\",\"doi\":\"10.1007/s11128-025-04696-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use an artificial neural network (ANN) model to identify the entanglement class of an experimentally generated three-qubit pure state drawn from one of the six inequivalent classes under stochastic local operations and classical communication (SLOCC). The ANN model is also able to detect the presence of genuinely multipartite entanglement (GME) in the state. We apply data science techniques to reduce the dimensionality of the problem, which corresponds to a reduction in the number of required density matrix elements to be computed. The ANN model is first trained on a simulated dataset containing randomly generated states and is later tested and validated on noisy experimental three-qubit states cast in the canonical form and generated on a nuclear magnetic resonance (NMR) quantum processor. We benchmark the ANN model via support vector machines (SVMs) and K-nearest neighbor (KNN) algorithms and compare the results of our ANN-based entanglement classification with existing three-qubit SLOCC entanglement classification schemes such as 3-tangle and correlation tensors. Our results demonstrate that the ANN model can perform GME detection and SLOCC class identification with high accuracy, using a priori knowledge of only a few density matrix elements as inputs. Since the ANN model works well with a reduced input dataset, it is an attractive method for entanglement classification in real-life situations with limited experimental data sets.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04696-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04696-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
ANN-enhanced detection of multipartite entanglement in a three-qubit NMR quantum processor
We use an artificial neural network (ANN) model to identify the entanglement class of an experimentally generated three-qubit pure state drawn from one of the six inequivalent classes under stochastic local operations and classical communication (SLOCC). The ANN model is also able to detect the presence of genuinely multipartite entanglement (GME) in the state. We apply data science techniques to reduce the dimensionality of the problem, which corresponds to a reduction in the number of required density matrix elements to be computed. The ANN model is first trained on a simulated dataset containing randomly generated states and is later tested and validated on noisy experimental three-qubit states cast in the canonical form and generated on a nuclear magnetic resonance (NMR) quantum processor. We benchmark the ANN model via support vector machines (SVMs) and K-nearest neighbor (KNN) algorithms and compare the results of our ANN-based entanglement classification with existing three-qubit SLOCC entanglement classification schemes such as 3-tangle and correlation tensors. Our results demonstrate that the ANN model can perform GME detection and SLOCC class identification with high accuracy, using a priori knowledge of only a few density matrix elements as inputs. Since the ANN model works well with a reduced input dataset, it is an attractive method for entanglement classification in real-life situations with limited experimental data sets.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.