Hamdi Gassara, Omar Naifar, Mohamed Chaabane, Abdellatif Ben Makhlouf, Hassen Arfaoui, Mohammed Aldandani
{"title":"Observer-based control for nonlinear Hadamard fractional-order systems via SOS approach","authors":"Hamdi Gassara, Omar Naifar, Mohamed Chaabane, Abdellatif Ben Makhlouf, Hassen Arfaoui, Mohammed Aldandani","doi":"10.1002/asjc.3497","DOIUrl":null,"url":null,"abstract":"<p>Practical stability refers to the notion that the origin is not an equilibrium point (EP) and that the system states tend to converge toward a sphere centered at the origin. The first goal of this paper is to analyze the concept of “practical stability” in Caputo–Hadamard fractional-order derivative (CHFOD) systems. Then, using the Lyapunov approach, a polynomial fuzzy (PF) observer-based controller for stabilizing CHFOD PF systems is created. The observer-based control is innovative since it was created and proven using the sum-of-squares (SOS) method. In conclusion, a numerical illustration is provided to corroborate the theoretical findings.</p>","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"27 2","pages":"912-920"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asjc.3497","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Observer-based control for nonlinear Hadamard fractional-order systems via SOS approach
Practical stability refers to the notion that the origin is not an equilibrium point (EP) and that the system states tend to converge toward a sphere centered at the origin. The first goal of this paper is to analyze the concept of “practical stability” in Caputo–Hadamard fractional-order derivative (CHFOD) systems. Then, using the Lyapunov approach, a polynomial fuzzy (PF) observer-based controller for stabilizing CHFOD PF systems is created. The observer-based control is innovative since it was created and proven using the sum-of-squares (SOS) method. In conclusion, a numerical illustration is provided to corroborate the theoretical findings.
期刊介绍:
The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application.
Published six times a year, the Journal aims to be a key platform for control communities throughout the world.
The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive.
Topics include:
The theory and design of control systems and components, encompassing:
Robust and distributed control using geometric, optimal, stochastic and nonlinear methods
Game theory and state estimation
Adaptive control, including neural networks, learning, parameter estimation
and system fault detection
Artificial intelligence, fuzzy and expert systems
Hierarchical and man-machine systems
All parts of systems engineering which consider the reliability of components and systems
Emerging application areas, such as:
Robotics
Mechatronics
Computers for computer-aided design, manufacturing, and control of
various industrial processes
Space vehicles and aircraft, ships, and traffic
Biomedical systems
National economies
Power systems
Agriculture
Natural resources.