{"title":"Changes in Teleconnection Patterns and Land–Atmosphere Coupling Amplify the Spring–Early Summer Heatwaves Over Southwestern China","authors":"Yuzhu Zheng, Tuantuan Zhang, Song Yang, Xingwen Jiang, Yanheng Luo, Hongming Yan, Kaiqiang Deng, Chengyang Zhang","doi":"10.1002/joc.8732","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The frequency and intensity of heatwaves over southwestern China during spring and early summer have been increased significantly during 1980–2022. Until now, the physical mechanisms for these changes in heatwaves remain unclear. Here, we show that these increases in heatwaves can be attributed to the changes in both local soil moisture–temperature coupling processes and teleconnection patterns across Eurasia. On the one hand, the third dominant mode of teleconnection patterns across Eurasia exhibits more pronounced and meridionally-elongated features after the 2000s, leading to more southeastward-shifted positive geopotential height anomalies towards southwestern China, favouring increases in the regional heatwaves. On the other hand, the intensified coupling strength of soil moisture–temperature further amplifies the heatwaves over southwestern China, in particular for compound drought and heatwave (CDHW) events. This intensified soil moisture–temperature coupling is attributed to the identical phase transitions of heat anomalies and temperature anomalies after the 2000s. Distinct characteristics and drivers of CDHW and non_CDHW over southwestern China are also discussed.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8732","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Changes in Teleconnection Patterns and Land–Atmosphere Coupling Amplify the Spring–Early Summer Heatwaves Over Southwestern China
The frequency and intensity of heatwaves over southwestern China during spring and early summer have been increased significantly during 1980–2022. Until now, the physical mechanisms for these changes in heatwaves remain unclear. Here, we show that these increases in heatwaves can be attributed to the changes in both local soil moisture–temperature coupling processes and teleconnection patterns across Eurasia. On the one hand, the third dominant mode of teleconnection patterns across Eurasia exhibits more pronounced and meridionally-elongated features after the 2000s, leading to more southeastward-shifted positive geopotential height anomalies towards southwestern China, favouring increases in the regional heatwaves. On the other hand, the intensified coupling strength of soil moisture–temperature further amplifies the heatwaves over southwestern China, in particular for compound drought and heatwave (CDHW) events. This intensified soil moisture–temperature coupling is attributed to the identical phase transitions of heat anomalies and temperature anomalies after the 2000s. Distinct characteristics and drivers of CDHW and non_CDHW over southwestern China are also discussed.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions