Weijian Hua, Cheng Zhang, Kellen Mitchell, Lily Raymond, Dale K. Hensley, Ryan Coulter, Erick Bandala, Jihua Chen, Changwoo Do, Danyang Zhao, Yifei Jin
{"title":"Advanced Design and 3D Printing Strategies With Alginate-Nanoclay Nanocomposites: From Microstructure to Bioprinting","authors":"Weijian Hua, Cheng Zhang, Kellen Mitchell, Lily Raymond, Dale K. Hensley, Ryan Coulter, Erick Bandala, Jihua Chen, Changwoo Do, Danyang Zhao, Yifei Jin","doi":"10.1002/admt.202401167","DOIUrl":null,"url":null,"abstract":"<p>Nanocomposites made from alginate and nanoclay are extensively applied for diverse biomedical applications. However, the lack of a clear understanding of the interactions between alginate and nanoclay makes it difficult to rationally design the nanocomposites for different material extrusion-based 3D bioprinting strategies. Here, a combined analytical model is proposed to accurately predict the interaction mechanisms between alginate and nanoclay through small-angle neutron scattering. These mechanisms are summarized into a phase diagram that can guide the design of alginate-nanoclay nanocomposites for different bioprinting applications. The rheological properties of various nanocomposites are measured to validate the proposed interaction mechanisms at the macroscale. Accordingly, three representative extrusion-based bioprinting strategies are linked with the nanocomposite design and applied to freeform fabricate complex structures. A roadmap is summarized to bridge the gap between biomaterial design and bioprinting processes, enabling the rapid and rational selection of biomaterial formula based on available 3D printing methods, and vice versa.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401167","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Advanced Design and 3D Printing Strategies With Alginate-Nanoclay Nanocomposites: From Microstructure to Bioprinting
Nanocomposites made from alginate and nanoclay are extensively applied for diverse biomedical applications. However, the lack of a clear understanding of the interactions between alginate and nanoclay makes it difficult to rationally design the nanocomposites for different material extrusion-based 3D bioprinting strategies. Here, a combined analytical model is proposed to accurately predict the interaction mechanisms between alginate and nanoclay through small-angle neutron scattering. These mechanisms are summarized into a phase diagram that can guide the design of alginate-nanoclay nanocomposites for different bioprinting applications. The rheological properties of various nanocomposites are measured to validate the proposed interaction mechanisms at the macroscale. Accordingly, three representative extrusion-based bioprinting strategies are linked with the nanocomposite design and applied to freeform fabricate complex structures. A roadmap is summarized to bridge the gap between biomaterial design and bioprinting processes, enabling the rapid and rational selection of biomaterial formula based on available 3D printing methods, and vice versa.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.