[阐明视神经疾病的发病机制和保护视力功能的新治疗策略]。

Chikako Harada, Kazuhiko Namekata, Xiaoli Guo, Takayuki Harada
{"title":"[阐明视神经疾病的发病机制和保护视力功能的新治疗策略]。","authors":"Chikako Harada, Kazuhiko Namekata, Xiaoli Guo, Takayuki Harada","doi":"10.1254/fpj.24049","DOIUrl":null,"url":null,"abstract":"<p><p>Approximately 80% of all the information we receive about the world comes through the visual pathways and visual function deterioration causes severe decline in QOL. Glaucoma is the leading cause of blindness in the world, in which visual field deficit deteriorates as the optic nerve degeneration progresses. Hence, the development of fundamental cure is needed. Our research focuses on the signaling of brain-derived neurotrophic factor (BDNF), one neurotrophic factor reduced with aging and glaucoma patients. We generated modified tropomyosin receptor kinase B (TrkB) which can be constitutively activated in the absence of its ligand BDNF. The active site of TrkB is localized to the plasma membrane, allowing for constitutive activation of intracellular signaling. Gene therapy with the modified TrkB in a mouse model of glaucoma was proven to be protective. In addition, our group reported that apoptosis signal-regulating kinase 1 (ASK1), one of the stress response factors, is related to the severity of optic neuritis and myelitis in model mice of multiple sclerosis. We generated four lines of cell type specific ASK1 conditional knockout mice and found that ASK1 in glial cells increased the severity of neuroinflammation while ASK1 deficiency in immune cells had no significant effects. Further, we found that ASK1 is required in microglia and astrocytes to cause and maintain neuroinflammation by a feedback loop between these two cell types. Our results suggest that ASK1 might be a promising therapeutic target for reducing neuroinflammation including optic neuritis.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 2","pages":"68-72"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Elucidation of the pathogenesis of optic nerve diseases and new therapeutic strategies to protect visual function].\",\"authors\":\"Chikako Harada, Kazuhiko Namekata, Xiaoli Guo, Takayuki Harada\",\"doi\":\"10.1254/fpj.24049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Approximately 80% of all the information we receive about the world comes through the visual pathways and visual function deterioration causes severe decline in QOL. Glaucoma is the leading cause of blindness in the world, in which visual field deficit deteriorates as the optic nerve degeneration progresses. Hence, the development of fundamental cure is needed. Our research focuses on the signaling of brain-derived neurotrophic factor (BDNF), one neurotrophic factor reduced with aging and glaucoma patients. We generated modified tropomyosin receptor kinase B (TrkB) which can be constitutively activated in the absence of its ligand BDNF. The active site of TrkB is localized to the plasma membrane, allowing for constitutive activation of intracellular signaling. Gene therapy with the modified TrkB in a mouse model of glaucoma was proven to be protective. In addition, our group reported that apoptosis signal-regulating kinase 1 (ASK1), one of the stress response factors, is related to the severity of optic neuritis and myelitis in model mice of multiple sclerosis. We generated four lines of cell type specific ASK1 conditional knockout mice and found that ASK1 in glial cells increased the severity of neuroinflammation while ASK1 deficiency in immune cells had no significant effects. Further, we found that ASK1 is required in microglia and astrocytes to cause and maintain neuroinflammation by a feedback loop between these two cell types. Our results suggest that ASK1 might be a promising therapeutic target for reducing neuroinflammation including optic neuritis.</p>\",\"PeriodicalId\":12208,\"journal\":{\"name\":\"Folia Pharmacologica Japonica\",\"volume\":\"160 2\",\"pages\":\"68-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia Pharmacologica Japonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1254/fpj.24049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.24049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Elucidation of the pathogenesis of optic nerve diseases and new therapeutic strategies to protect visual function].

Approximately 80% of all the information we receive about the world comes through the visual pathways and visual function deterioration causes severe decline in QOL. Glaucoma is the leading cause of blindness in the world, in which visual field deficit deteriorates as the optic nerve degeneration progresses. Hence, the development of fundamental cure is needed. Our research focuses on the signaling of brain-derived neurotrophic factor (BDNF), one neurotrophic factor reduced with aging and glaucoma patients. We generated modified tropomyosin receptor kinase B (TrkB) which can be constitutively activated in the absence of its ligand BDNF. The active site of TrkB is localized to the plasma membrane, allowing for constitutive activation of intracellular signaling. Gene therapy with the modified TrkB in a mouse model of glaucoma was proven to be protective. In addition, our group reported that apoptosis signal-regulating kinase 1 (ASK1), one of the stress response factors, is related to the severity of optic neuritis and myelitis in model mice of multiple sclerosis. We generated four lines of cell type specific ASK1 conditional knockout mice and found that ASK1 in glial cells increased the severity of neuroinflammation while ASK1 deficiency in immune cells had no significant effects. Further, we found that ASK1 is required in microglia and astrocytes to cause and maintain neuroinflammation by a feedback loop between these two cell types. Our results suggest that ASK1 might be a promising therapeutic target for reducing neuroinflammation including optic neuritis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia Pharmacologica Japonica
Folia Pharmacologica Japonica Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
0.40
自引率
0.00%
发文量
132
期刊最新文献
[Deep brain imaging by using GRIN lens].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1