[抗精神病药物利培酮及其活性代谢物帕利哌酮在围产期的生理药代动力学模型分析]。

Ikuko Yano
{"title":"[抗精神病药物利培酮及其活性代谢物帕利哌酮在围产期的生理药代动力学模型分析]。","authors":"Ikuko Yano","doi":"10.1254/fpj.24065","DOIUrl":null,"url":null,"abstract":"<p><p>Pregnancy can affect the absorption, distribution, metabolism, and excretion of several drugs due to pregnancy-induced physiological changes. Risperidone, a second-generation antipsychotic, is prescribed to pregnant women when the benefits outweigh the risks to the fetus. Serum concentrations of risperidone and its active metabolite paliperidone in a pregnant woman as well as her newborn were measured, and physiologically-based pharmacokinetic (PBPK) models of both drugs were developed. The effects of pregnancy on pharmacokinetic parameters of both drugs were quantitively assessed by the developed PBPK model. As a result, serum concentrations of risperidone and paliperidone decrease in the pregnant status and abruptly recover to the non-pregnant level after delivery mainly due to cytochrome P450 (CYP) 2D6 activity changes, and therefore, close and careful monitoring of clinical symptoms should be considered during pregnancy and after delivery. In the 10 different models for estimating the renal function of children, the Flanders metadata equation showed the lowest absolute bias and the greatest precision in predicting paliperidone serum concentration in the neonate. PBPK model-informed approach could help with the precision dosing in special populations, such as pregnant women and neonates.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 2","pages":"103-107"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Physiologically-based pharmacokinetic model analysis of antipsychotic risperidone and its active metabolite paliperidone in perinatal period].\",\"authors\":\"Ikuko Yano\",\"doi\":\"10.1254/fpj.24065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pregnancy can affect the absorption, distribution, metabolism, and excretion of several drugs due to pregnancy-induced physiological changes. Risperidone, a second-generation antipsychotic, is prescribed to pregnant women when the benefits outweigh the risks to the fetus. Serum concentrations of risperidone and its active metabolite paliperidone in a pregnant woman as well as her newborn were measured, and physiologically-based pharmacokinetic (PBPK) models of both drugs were developed. The effects of pregnancy on pharmacokinetic parameters of both drugs were quantitively assessed by the developed PBPK model. As a result, serum concentrations of risperidone and paliperidone decrease in the pregnant status and abruptly recover to the non-pregnant level after delivery mainly due to cytochrome P450 (CYP) 2D6 activity changes, and therefore, close and careful monitoring of clinical symptoms should be considered during pregnancy and after delivery. In the 10 different models for estimating the renal function of children, the Flanders metadata equation showed the lowest absolute bias and the greatest precision in predicting paliperidone serum concentration in the neonate. PBPK model-informed approach could help with the precision dosing in special populations, such as pregnant women and neonates.</p>\",\"PeriodicalId\":12208,\"journal\":{\"name\":\"Folia Pharmacologica Japonica\",\"volume\":\"160 2\",\"pages\":\"103-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia Pharmacologica Japonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1254/fpj.24065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.24065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Physiologically-based pharmacokinetic model analysis of antipsychotic risperidone and its active metabolite paliperidone in perinatal period].

Pregnancy can affect the absorption, distribution, metabolism, and excretion of several drugs due to pregnancy-induced physiological changes. Risperidone, a second-generation antipsychotic, is prescribed to pregnant women when the benefits outweigh the risks to the fetus. Serum concentrations of risperidone and its active metabolite paliperidone in a pregnant woman as well as her newborn were measured, and physiologically-based pharmacokinetic (PBPK) models of both drugs were developed. The effects of pregnancy on pharmacokinetic parameters of both drugs were quantitively assessed by the developed PBPK model. As a result, serum concentrations of risperidone and paliperidone decrease in the pregnant status and abruptly recover to the non-pregnant level after delivery mainly due to cytochrome P450 (CYP) 2D6 activity changes, and therefore, close and careful monitoring of clinical symptoms should be considered during pregnancy and after delivery. In the 10 different models for estimating the renal function of children, the Flanders metadata equation showed the lowest absolute bias and the greatest precision in predicting paliperidone serum concentration in the neonate. PBPK model-informed approach could help with the precision dosing in special populations, such as pregnant women and neonates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia Pharmacologica Japonica
Folia Pharmacologica Japonica Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
0.40
自引率
0.00%
发文量
132
期刊最新文献
[Deep brain imaging by using GRIN lens].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1