IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Molecular & Cellular Proteomics Pub Date : 2025-02-28 DOI:10.1016/j.mcpro.2025.100930
Zhen Liu, Qilin Zhou, Jun Zan, Jingyan Tian, Yangzhuohan Zhang, Fanggui Wu, Huan Zhao, Qianwen Peng, Shangjie Liu, Qianjun Chen, Endong Liu, Zhengdong Liao, Pengfei Zou, Lin Mei, Wen Wang, Sen Dong, Luo Niu, Shengda Wu, Liangge He, Xiaoyi Zhou, Yanbo Jin, Panpan Li, Sheng Yang
{"title":"Proteomic analysis of human follicular fluid-derived exosomes reveals that insufficient folliculogenesis in aging women is associated with infertility.","authors":"Zhen Liu, Qilin Zhou, Jun Zan, Jingyan Tian, Yangzhuohan Zhang, Fanggui Wu, Huan Zhao, Qianwen Peng, Shangjie Liu, Qianjun Chen, Endong Liu, Zhengdong Liao, Pengfei Zou, Lin Mei, Wen Wang, Sen Dong, Luo Niu, Shengda Wu, Liangge He, Xiaoyi Zhou, Yanbo Jin, Panpan Li, Sheng Yang","doi":"10.1016/j.mcpro.2025.100930","DOIUrl":null,"url":null,"abstract":"<p><p>Although the risk of female infertility increases with advancing age, the underlying mechanisms remain unknown. Exosomes in follicular fluid are suggested to regulate folliculogenesis and influence oocyte quality, potentially playing a critical role in age-related infertility. Elucidating their content could enhance the understanding of the molecular mechanisms associated with female aging-induced infertility. In this study, we explored the proteomic profiles of exosomes derived from human follicular fluid to identify protein signatures associated with infertility in both young and aging women. Despite the lack of significant differences in the morphology and particle size of follicular fluid-derived exosomes between the two groups, proteomic analysis revealed a distinct pattern of differentially expressed proteins (DEPs). DEPs associated with B-cell activation, pathogen invasion, and disrupted metabolic processes were significantly more highly expressed in the aging group than in the young group, indicating their involvement in age-related infertility. In vivo experiments demonstrated that the application of exosomes, particularly those derived from young female mice, facilitated the successful maturation of follicles. Key exosomal proteins, including ENO1, HSP90B1, fetuin-B, C7, and APOC4, were found to be associated with follicular maturation. Furthermore, the PI3K/AKT signaling pathway, which is known to be related to folliculogenesis, was activated by the application of exosomes in aging female mice. This study provides novel insights into the aging-associated protein signatures of follicular fluid-derived exosomes and their potential role in infertility. These findings suggest that aging-related protein signatures in exosomes could contribute to the treatment of age-related infertility.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100930"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100930","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

虽然女性不孕的风险会随着年龄的增长而增加,但其潜在的机制仍不清楚。卵泡液中的外泌体被认为能调节卵泡生成并影响卵母细胞质量,可能在与年龄相关的不孕症中发挥关键作用。阐明卵泡液中的外泌体含量可加深对女性衰老诱发不孕症相关分子机制的理解。在这项研究中,我们探索了从人类卵泡液中提取的外泌体的蛋白质组图谱,以确定与年轻和衰老女性不孕症相关的蛋白质特征。尽管两组女性卵泡液外泌体的形态和颗粒大小没有明显差异,但蛋白质组学分析却揭示了差异表达蛋白(DEPs)的独特模式。与B细胞活化、病原体入侵和新陈代谢过程紊乱相关的DEPs在老龄组的表达量明显高于年轻组,这表明它们参与了与年龄相关的不孕症。体内实验表明,外泌体的应用,尤其是来自年轻雌性小鼠的外泌体,有助于卵泡的成功成熟。研究发现,包括ENO1、HSP90B1、fetuin-B、C7和APOC4在内的关键外泌体蛋白与卵泡成熟有关。此外,已知与卵泡生成有关的PI3K/AKT信号通路在衰老雌性小鼠体内应用外泌体后被激活。这项研究为卵泡液外泌体的衰老相关蛋白特征及其在不孕症中的潜在作用提供了新的见解。这些发现表明,外泌体中与衰老相关的蛋白质特征可能有助于治疗与年龄相关的不孕症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteomic analysis of human follicular fluid-derived exosomes reveals that insufficient folliculogenesis in aging women is associated with infertility.

Although the risk of female infertility increases with advancing age, the underlying mechanisms remain unknown. Exosomes in follicular fluid are suggested to regulate folliculogenesis and influence oocyte quality, potentially playing a critical role in age-related infertility. Elucidating their content could enhance the understanding of the molecular mechanisms associated with female aging-induced infertility. In this study, we explored the proteomic profiles of exosomes derived from human follicular fluid to identify protein signatures associated with infertility in both young and aging women. Despite the lack of significant differences in the morphology and particle size of follicular fluid-derived exosomes between the two groups, proteomic analysis revealed a distinct pattern of differentially expressed proteins (DEPs). DEPs associated with B-cell activation, pathogen invasion, and disrupted metabolic processes were significantly more highly expressed in the aging group than in the young group, indicating their involvement in age-related infertility. In vivo experiments demonstrated that the application of exosomes, particularly those derived from young female mice, facilitated the successful maturation of follicles. Key exosomal proteins, including ENO1, HSP90B1, fetuin-B, C7, and APOC4, were found to be associated with follicular maturation. Furthermore, the PI3K/AKT signaling pathway, which is known to be related to folliculogenesis, was activated by the application of exosomes in aging female mice. This study provides novel insights into the aging-associated protein signatures of follicular fluid-derived exosomes and their potential role in infertility. These findings suggest that aging-related protein signatures in exosomes could contribute to the treatment of age-related infertility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
期刊最新文献
Proteomic Analysis of Aqueous Humor Identified Clinically Relevant Molecular Targets for Neovascular Complications in Diabetic Retinopathy. Deleterious knock-outs in the HLA class I antigen processing and presentation machinery induce distinct changes in the immunopeptidome. Proteomics and machine learning-based approach to decipher subcellular proteome of mouse heart. A Single-Step Protein Extraction for Lung Extracellular Matrix Proteomics Enabled by the Photocleavable Surfactant Azo and timsTOF Pro. Single-Cell Proteomic Characterization of Drug-Resistant Prostate Cancer Cells Reveals Molecular Signatures Associated with Morphological Changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1