Colya N Englisch, Coline M Diebolt, Emilie Kirstein, Vanessa Wahl, Philipp Wartenberg, Dirk Schaudien, Anja Beckmann, Matthias W Laschke, Gabriela Krasteva-Christ, Thomas Gudermann, Vladimir Chubanov, Ulrich Boehm, Thomas Tschernig
{"title":"小鼠肾脏中的 TRPM6--目标和抗体。","authors":"Colya N Englisch, Coline M Diebolt, Emilie Kirstein, Vanessa Wahl, Philipp Wartenberg, Dirk Schaudien, Anja Beckmann, Matthias W Laschke, Gabriela Krasteva-Christ, Thomas Gudermann, Vladimir Chubanov, Ulrich Boehm, Thomas Tschernig","doi":"10.1007/s00210-025-03951-0","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium is the fourth most abundant cation in the human organism. As a key-player in many enzymatic reactions, magnesium homeostasis disbalance can cause severe disorders. In the early 2000s, the transient receptor potential melastatin channel 6 (TRPM6) was identified as a critical protein in renal Mg<sup>2+</sup>-reabsorption in the distal convoluted tubule (DCT). As the key-interface responsible for salt/water adaptation to environmental changes, the kidney is a highly dynamic system. Therefore, renal TRPM6 expression and Mg<sup>2+</sup>-reabsorption might not be restricted to the DCT, as previously indicated. To address this, protein targeting is mandatory since genomic detection is insufficient to conclude on functional expression. For this purpose, we used a polyclonal TRPM6 antibody from an established manufacturer and detected immunostaining in murine proximal and distal tubules. As a matter of fact, the specificity of most commercially available TRPM6 antibodies is insufficiently validated which relies on the lack of constitutive trpm6 knockouts. Therefore, conditional trpm6 knockout mice were used for control experiments. Similar signals were observed in the knockout tissue when compared to wildtype using the TRPM6 antibody. Overlaps with TRPM7 epitopes or other peptides are conceivable. Thus, TRPM6 immunohistochemistry and immunofluorescence results are difficult to interpret, and the spectrum of renal TRPM6 expression is not yet elucidated.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRPM6 in murine kidneys-of targets and antibodies.\",\"authors\":\"Colya N Englisch, Coline M Diebolt, Emilie Kirstein, Vanessa Wahl, Philipp Wartenberg, Dirk Schaudien, Anja Beckmann, Matthias W Laschke, Gabriela Krasteva-Christ, Thomas Gudermann, Vladimir Chubanov, Ulrich Boehm, Thomas Tschernig\",\"doi\":\"10.1007/s00210-025-03951-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnesium is the fourth most abundant cation in the human organism. As a key-player in many enzymatic reactions, magnesium homeostasis disbalance can cause severe disorders. In the early 2000s, the transient receptor potential melastatin channel 6 (TRPM6) was identified as a critical protein in renal Mg<sup>2+</sup>-reabsorption in the distal convoluted tubule (DCT). As the key-interface responsible for salt/water adaptation to environmental changes, the kidney is a highly dynamic system. Therefore, renal TRPM6 expression and Mg<sup>2+</sup>-reabsorption might not be restricted to the DCT, as previously indicated. To address this, protein targeting is mandatory since genomic detection is insufficient to conclude on functional expression. For this purpose, we used a polyclonal TRPM6 antibody from an established manufacturer and detected immunostaining in murine proximal and distal tubules. As a matter of fact, the specificity of most commercially available TRPM6 antibodies is insufficiently validated which relies on the lack of constitutive trpm6 knockouts. Therefore, conditional trpm6 knockout mice were used for control experiments. Similar signals were observed in the knockout tissue when compared to wildtype using the TRPM6 antibody. Overlaps with TRPM7 epitopes or other peptides are conceivable. Thus, TRPM6 immunohistochemistry and immunofluorescence results are difficult to interpret, and the spectrum of renal TRPM6 expression is not yet elucidated.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-025-03951-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-03951-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
TRPM6 in murine kidneys-of targets and antibodies.
Magnesium is the fourth most abundant cation in the human organism. As a key-player in many enzymatic reactions, magnesium homeostasis disbalance can cause severe disorders. In the early 2000s, the transient receptor potential melastatin channel 6 (TRPM6) was identified as a critical protein in renal Mg2+-reabsorption in the distal convoluted tubule (DCT). As the key-interface responsible for salt/water adaptation to environmental changes, the kidney is a highly dynamic system. Therefore, renal TRPM6 expression and Mg2+-reabsorption might not be restricted to the DCT, as previously indicated. To address this, protein targeting is mandatory since genomic detection is insufficient to conclude on functional expression. For this purpose, we used a polyclonal TRPM6 antibody from an established manufacturer and detected immunostaining in murine proximal and distal tubules. As a matter of fact, the specificity of most commercially available TRPM6 antibodies is insufficiently validated which relies on the lack of constitutive trpm6 knockouts. Therefore, conditional trpm6 knockout mice were used for control experiments. Similar signals were observed in the knockout tissue when compared to wildtype using the TRPM6 antibody. Overlaps with TRPM7 epitopes or other peptides are conceivable. Thus, TRPM6 immunohistochemistry and immunofluorescence results are difficult to interpret, and the spectrum of renal TRPM6 expression is not yet elucidated.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.