{"title":"为混合计算系统中的多粒度 GPU-CPU 协同调度提供分层三向决策融合","authors":"Chunmao Jiang, Yongpeng Wang","doi":"10.1016/j.ins.2025.122048","DOIUrl":null,"url":null,"abstract":"<div><div>In heterogeneous computing environments, coscheduling of the graphics processing unit (GPU) and central processing unit (CPU) poses substantial challenges because of the diverse hardware architectures and dynamic workload patterns. To address this, we propose a novel hierarchical three-way decision fusion (H3WDF) strategy that integrates multigranularity workload predictions and adaptive scheduling policies. H3WDF employs a three-tier decision-making process, achieving global coordination through selective aggregation of localized decisions while establishing a balance between efficiency and quality of service. Results of experimental evaluation in a heterogeneous environment comprising several GPUs demonstrate the superior performance of H3WDF across multiple metrics. For “large language model” workloads, H3WDF achieves remarkable prediction accuracy both for short- and long-term forecasts. H3WDF's three-way decision mechanism effectively distributes workloads, balancing between batched executions for training tasks and immediate executions for inference workloads. Resource utilization exhibits significant improvements across all GPU types, with particularly strong performance in the case of high-end GPUs. Compared with the state-of-the-art baselines, H3WDF substantially reduces job completion times, enhances energy efficiency, and consistently maintains high fairness in resource allocation.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"708 ","pages":"Article 122048"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical three-way decision fusion for multigranularity GPU-CPU coscheduling in hybrid computing systems\",\"authors\":\"Chunmao Jiang, Yongpeng Wang\",\"doi\":\"10.1016/j.ins.2025.122048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In heterogeneous computing environments, coscheduling of the graphics processing unit (GPU) and central processing unit (CPU) poses substantial challenges because of the diverse hardware architectures and dynamic workload patterns. To address this, we propose a novel hierarchical three-way decision fusion (H3WDF) strategy that integrates multigranularity workload predictions and adaptive scheduling policies. H3WDF employs a three-tier decision-making process, achieving global coordination through selective aggregation of localized decisions while establishing a balance between efficiency and quality of service. Results of experimental evaluation in a heterogeneous environment comprising several GPUs demonstrate the superior performance of H3WDF across multiple metrics. For “large language model” workloads, H3WDF achieves remarkable prediction accuracy both for short- and long-term forecasts. H3WDF's three-way decision mechanism effectively distributes workloads, balancing between batched executions for training tasks and immediate executions for inference workloads. Resource utilization exhibits significant improvements across all GPU types, with particularly strong performance in the case of high-end GPUs. Compared with the state-of-the-art baselines, H3WDF substantially reduces job completion times, enhances energy efficiency, and consistently maintains high fairness in resource allocation.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"708 \",\"pages\":\"Article 122048\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002002552500180X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002002552500180X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Hierarchical three-way decision fusion for multigranularity GPU-CPU coscheduling in hybrid computing systems
In heterogeneous computing environments, coscheduling of the graphics processing unit (GPU) and central processing unit (CPU) poses substantial challenges because of the diverse hardware architectures and dynamic workload patterns. To address this, we propose a novel hierarchical three-way decision fusion (H3WDF) strategy that integrates multigranularity workload predictions and adaptive scheduling policies. H3WDF employs a three-tier decision-making process, achieving global coordination through selective aggregation of localized decisions while establishing a balance between efficiency and quality of service. Results of experimental evaluation in a heterogeneous environment comprising several GPUs demonstrate the superior performance of H3WDF across multiple metrics. For “large language model” workloads, H3WDF achieves remarkable prediction accuracy both for short- and long-term forecasts. H3WDF's three-way decision mechanism effectively distributes workloads, balancing between batched executions for training tasks and immediate executions for inference workloads. Resource utilization exhibits significant improvements across all GPU types, with particularly strong performance in the case of high-end GPUs. Compared with the state-of-the-art baselines, H3WDF substantially reduces job completion times, enhances energy efficiency, and consistently maintains high fairness in resource allocation.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.