Yinghui J. Huang, Shin Foong Ngiow, Amy E. Baxter, Sasikanth Manne, Simone L. Park, Jennifer E. Wu, Omar Khan, Josephine R. Giles, E. John Wherry
{"title":"TOX 的持续表达可保护耗竭的 CD8 T 细胞表观遗传命运","authors":"Yinghui J. Huang, Shin Foong Ngiow, Amy E. Baxter, Sasikanth Manne, Simone L. Park, Jennifer E. Wu, Omar Khan, Josephine R. Giles, E. John Wherry","doi":"10.1126/sciimmunol.ado3032","DOIUrl":null,"url":null,"abstract":"Although checkpoint blockade temporarily improves exhausted CD8 T (T <jats:sub>ex</jats:sub> ) cell function, the underlying T <jats:sub>ex</jats:sub> epigenetic landscape remains largely unchanged, preventing durable T <jats:sub>ex</jats:sub> “reinvigoration” in cancer and chronic infections. The transcription factor TOX initiates T <jats:sub>ex</jats:sub> epigenetic programming, yet it remains unclear whether TOX continually preserves T <jats:sub>ex</jats:sub> biology after T <jats:sub>ex</jats:sub> establishment. Here, we demonstrated that induced TOX ablation in committed T <jats:sub>ex</jats:sub> cells resulted in apoptotic-driven loss of T <jats:sub>ex</jats:sub> cells, reduced expression of inhibitory receptors, and decreased terminal differentiation. Gene expression and epigenetic profiling revealed a critical role for TOX in maintaining chromatin accessibility and transcriptional patterns in committed T <jats:sub>ex</jats:sub> cells. Moreover, TOX removal endows established T <jats:sub>ex</jats:sub> cells with greater fate flexibility to differentiate into more functional effector-like T cells. Thus, continuous TOX expression in established T <jats:sub>ex</jats:sub> cells acts as a durable epigenetic barrier reinforcing the T <jats:sub>ex</jats:sub> developmental fate. TOX manipulation even after T <jats:sub>ex</jats:sub> establishment could therefore provide therapeutic opportunities to rewire T <jats:sub>ex</jats:sub> cells in chronic infections or cancer.","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"30 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous expression of TOX safeguards exhausted CD8 T cell epigenetic fate\",\"authors\":\"Yinghui J. Huang, Shin Foong Ngiow, Amy E. Baxter, Sasikanth Manne, Simone L. Park, Jennifer E. Wu, Omar Khan, Josephine R. Giles, E. John Wherry\",\"doi\":\"10.1126/sciimmunol.ado3032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although checkpoint blockade temporarily improves exhausted CD8 T (T <jats:sub>ex</jats:sub> ) cell function, the underlying T <jats:sub>ex</jats:sub> epigenetic landscape remains largely unchanged, preventing durable T <jats:sub>ex</jats:sub> “reinvigoration” in cancer and chronic infections. The transcription factor TOX initiates T <jats:sub>ex</jats:sub> epigenetic programming, yet it remains unclear whether TOX continually preserves T <jats:sub>ex</jats:sub> biology after T <jats:sub>ex</jats:sub> establishment. Here, we demonstrated that induced TOX ablation in committed T <jats:sub>ex</jats:sub> cells resulted in apoptotic-driven loss of T <jats:sub>ex</jats:sub> cells, reduced expression of inhibitory receptors, and decreased terminal differentiation. Gene expression and epigenetic profiling revealed a critical role for TOX in maintaining chromatin accessibility and transcriptional patterns in committed T <jats:sub>ex</jats:sub> cells. Moreover, TOX removal endows established T <jats:sub>ex</jats:sub> cells with greater fate flexibility to differentiate into more functional effector-like T cells. Thus, continuous TOX expression in established T <jats:sub>ex</jats:sub> cells acts as a durable epigenetic barrier reinforcing the T <jats:sub>ex</jats:sub> developmental fate. TOX manipulation even after T <jats:sub>ex</jats:sub> establishment could therefore provide therapeutic opportunities to rewire T <jats:sub>ex</jats:sub> cells in chronic infections or cancer.\",\"PeriodicalId\":21734,\"journal\":{\"name\":\"Science Immunology\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1126/sciimmunol.ado3032\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/sciimmunol.ado3032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Continuous expression of TOX safeguards exhausted CD8 T cell epigenetic fate
Although checkpoint blockade temporarily improves exhausted CD8 T (T ex ) cell function, the underlying T ex epigenetic landscape remains largely unchanged, preventing durable T ex “reinvigoration” in cancer and chronic infections. The transcription factor TOX initiates T ex epigenetic programming, yet it remains unclear whether TOX continually preserves T ex biology after T ex establishment. Here, we demonstrated that induced TOX ablation in committed T ex cells resulted in apoptotic-driven loss of T ex cells, reduced expression of inhibitory receptors, and decreased terminal differentiation. Gene expression and epigenetic profiling revealed a critical role for TOX in maintaining chromatin accessibility and transcriptional patterns in committed T ex cells. Moreover, TOX removal endows established T ex cells with greater fate flexibility to differentiate into more functional effector-like T cells. Thus, continuous TOX expression in established T ex cells acts as a durable epigenetic barrier reinforcing the T ex developmental fate. TOX manipulation even after T ex establishment could therefore provide therapeutic opportunities to rewire T ex cells in chronic infections or cancer.
期刊介绍:
Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.