热木星气态包络的流体力学

IF 0.6 4区 工程技术 Q4 MECHANICS Fluid Dynamics Pub Date : 2025-03-09 DOI:10.1134/S0015462824605163
D. V. Bisikalo, A. G. Zhilkin
{"title":"热木星气态包络的流体力学","authors":"D. V. Bisikalo,&nbsp;A. G. Zhilkin","doi":"10.1134/S0015462824605163","DOIUrl":null,"url":null,"abstract":"<p>We discuss the results of our studies of the dynamics and structure of extended envelopes of hot Jupiters. For calculations we used 3D numerical model, based on the approximation of multicomponent magnetohydrodynamics and allowing calculate the super-Alfvén, sub-Alfvén, and trans-Alfvén regimes of the stellar wind flow around the planet. The main attention in the work is paid to aspects of further development and testing of the model. Thus, the analysis of the calculation results taking into account magnetic viscosity showed that at short times of the order of the orbital period, the effects of magnetic field diffusion are insignificant and can be excluded from the calculations of fast-flowing processes associated with the impact of coronal mass ejections on the envelope. To take into account the processes occurring in the inner parts of the atmosphere, a modification of the code for the case of a spherical mesh was carried out, and 1D aeronomic model was developed. This provides a more correct specification of the initial and boundary conditions in the upper atmosphere of hot Jupiter and opens up new possibilities for obtaining a self-consistent solution that includes both the inner atmosphere and the exoplanet’s envelope. In general, the developed tools create a good basis for interpreting observations of the planned space mission “Spektr-UF/WSO-UV” and, in the long term, will allow determining the parameters of the stellar wind and coronal mass ejections from the host stars of these exoplanets.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 8","pages":"2362 - 2376"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamics of Gaseous Envelopes of Hot Jupiters\",\"authors\":\"D. V. Bisikalo,&nbsp;A. G. Zhilkin\",\"doi\":\"10.1134/S0015462824605163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We discuss the results of our studies of the dynamics and structure of extended envelopes of hot Jupiters. For calculations we used 3D numerical model, based on the approximation of multicomponent magnetohydrodynamics and allowing calculate the super-Alfvén, sub-Alfvén, and trans-Alfvén regimes of the stellar wind flow around the planet. The main attention in the work is paid to aspects of further development and testing of the model. Thus, the analysis of the calculation results taking into account magnetic viscosity showed that at short times of the order of the orbital period, the effects of magnetic field diffusion are insignificant and can be excluded from the calculations of fast-flowing processes associated with the impact of coronal mass ejections on the envelope. To take into account the processes occurring in the inner parts of the atmosphere, a modification of the code for the case of a spherical mesh was carried out, and 1D aeronomic model was developed. This provides a more correct specification of the initial and boundary conditions in the upper atmosphere of hot Jupiter and opens up new possibilities for obtaining a self-consistent solution that includes both the inner atmosphere and the exoplanet’s envelope. In general, the developed tools create a good basis for interpreting observations of the planned space mission “Spektr-UF/WSO-UV” and, in the long term, will allow determining the parameters of the stellar wind and coronal mass ejections from the host stars of these exoplanets.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"59 8\",\"pages\":\"2362 - 2376\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462824605163\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824605163","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了热木星扩展包层的动力学和结构的研究结果。为了计算,我们使用了三维数值模型,基于多分量磁流体动力学的近似,并允许计算围绕地球的恒星风流的超阿尔夫萨姆,亚阿尔夫萨姆和跨阿尔夫萨姆制度。工作的重点是进一步开发和测试模型的各个方面。因此,对考虑磁粘度的计算结果的分析表明,在轨道周期数量级的短时间内,磁场扩散的影响微不足道,可以从与日冕物质抛射对包络的影响相关的快速流动过程的计算中排除。考虑到大气内部发生的过程,对球面网格情况下的代码进行了修改,并建立了一维空气动力学模型。这为热木星高层大气的初始和边界条件提供了更正确的说明,并为获得包括内部大气和系外行星包络层在内的自洽解决方案开辟了新的可能性。总的来说,开发的工具为解释计划中的太空任务“spectrr - uf /WSO-UV”的观测结果奠定了良好的基础,从长远来看,将允许确定这些系外行星主恒星的恒星风和日冕物质抛射的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrodynamics of Gaseous Envelopes of Hot Jupiters

We discuss the results of our studies of the dynamics and structure of extended envelopes of hot Jupiters. For calculations we used 3D numerical model, based on the approximation of multicomponent magnetohydrodynamics and allowing calculate the super-Alfvén, sub-Alfvén, and trans-Alfvén regimes of the stellar wind flow around the planet. The main attention in the work is paid to aspects of further development and testing of the model. Thus, the analysis of the calculation results taking into account magnetic viscosity showed that at short times of the order of the orbital period, the effects of magnetic field diffusion are insignificant and can be excluded from the calculations of fast-flowing processes associated with the impact of coronal mass ejections on the envelope. To take into account the processes occurring in the inner parts of the atmosphere, a modification of the code for the case of a spherical mesh was carried out, and 1D aeronomic model was developed. This provides a more correct specification of the initial and boundary conditions in the upper atmosphere of hot Jupiter and opens up new possibilities for obtaining a self-consistent solution that includes both the inner atmosphere and the exoplanet’s envelope. In general, the developed tools create a good basis for interpreting observations of the planned space mission “Spektr-UF/WSO-UV” and, in the long term, will allow determining the parameters of the stellar wind and coronal mass ejections from the host stars of these exoplanets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
期刊最新文献
Evolution of Perturbations in Submerged Jets Eddy-Resolving Numerical Simulation of Mixed Convection in a Rotating Annular Heated Cavity with Axial Throughflow Numerical and Experimental Investigation of Non-Cavitation Noise of Axial Flow Pumps for Various Pump Parameters Review of the Numerical and Experimental Studies of the Hyperloop Cavitation Bubble Collapse over a Solid Surface: A Numerical Approach Incorporating Surface and Flow Variations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1