{"title":"用于光伏应用的四耦合硅纳米线中的光捕获","authors":"Jinrong Tang , Jie Zhang , Wenfu Liu , Yasha Yi","doi":"10.1016/j.optcom.2025.131747","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon nanowires (SiNW) are highly cost-effective and efficient materials, widely applied in solar cells. In this work, we report four-coupled SiNWs (FCNW) for photovoltaic applications. We found that FCNW shows significantly enhanced light absorption compared to single SiNW (SNW) and four-uncoupled SiNWs (FUNW), due to its excellent light-trapping effect. The optimal short-circuit current density of FCNW reaches 14.10 mA/cm<sup>2</sup>, increasing by 41.71 % and 17.99 % compared to SNW (9.95 mA/cm<sup>2</sup>) and FUNW (11.95 mA/cm<sup>2</sup>) respectively. Moreover, coating a non-absorbing dielectric shell (SFCNW) and adjusting its radius can further improve the short-circuit current density. The results show that SFCNW possesses a higher short-circuit current density of 22.19 mA/cm<sup>2</sup>, enhanced by 123.02 % and 57.38 % relative to SNW and FCNW respectively. Therefore, the SFCNW structure provides a novel approach to improving the photoelectric conversion efficiency of solar cells.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"583 ","pages":"Article 131747"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light trapping in four-coupled silicon nanowires for photovoltaic applications\",\"authors\":\"Jinrong Tang , Jie Zhang , Wenfu Liu , Yasha Yi\",\"doi\":\"10.1016/j.optcom.2025.131747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicon nanowires (SiNW) are highly cost-effective and efficient materials, widely applied in solar cells. In this work, we report four-coupled SiNWs (FCNW) for photovoltaic applications. We found that FCNW shows significantly enhanced light absorption compared to single SiNW (SNW) and four-uncoupled SiNWs (FUNW), due to its excellent light-trapping effect. The optimal short-circuit current density of FCNW reaches 14.10 mA/cm<sup>2</sup>, increasing by 41.71 % and 17.99 % compared to SNW (9.95 mA/cm<sup>2</sup>) and FUNW (11.95 mA/cm<sup>2</sup>) respectively. Moreover, coating a non-absorbing dielectric shell (SFCNW) and adjusting its radius can further improve the short-circuit current density. The results show that SFCNW possesses a higher short-circuit current density of 22.19 mA/cm<sup>2</sup>, enhanced by 123.02 % and 57.38 % relative to SNW and FCNW respectively. Therefore, the SFCNW structure provides a novel approach to improving the photoelectric conversion efficiency of solar cells.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"583 \",\"pages\":\"Article 131747\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825002755\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825002755","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Light trapping in four-coupled silicon nanowires for photovoltaic applications
Silicon nanowires (SiNW) are highly cost-effective and efficient materials, widely applied in solar cells. In this work, we report four-coupled SiNWs (FCNW) for photovoltaic applications. We found that FCNW shows significantly enhanced light absorption compared to single SiNW (SNW) and four-uncoupled SiNWs (FUNW), due to its excellent light-trapping effect. The optimal short-circuit current density of FCNW reaches 14.10 mA/cm2, increasing by 41.71 % and 17.99 % compared to SNW (9.95 mA/cm2) and FUNW (11.95 mA/cm2) respectively. Moreover, coating a non-absorbing dielectric shell (SFCNW) and adjusting its radius can further improve the short-circuit current density. The results show that SFCNW possesses a higher short-circuit current density of 22.19 mA/cm2, enhanced by 123.02 % and 57.38 % relative to SNW and FCNW respectively. Therefore, the SFCNW structure provides a novel approach to improving the photoelectric conversion efficiency of solar cells.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.