{"title":"Study on thermal fatigue damage mechanisms for high-speed train’s wheel-mounted brake disc considering multiaxial stress state","authors":"Jiacheng Shen , Yu Pan , Jianyong Zuo","doi":"10.1016/j.engfailanal.2025.109525","DOIUrl":null,"url":null,"abstract":"<div><div>The wheel-mounted brake disc is a critical component of the high-speed train brake system, and the bolt hole is identified as a high-risk region for fatigue failure in practice. This study proposes a thermal fatigue damage analysis method incorporating the multiaxial stress state to explore the complex failure mechanisms for wheel-mounted brake discs. A finite element model of a typical wheel-mounted brake disc is established and validated for a closer-to-reality prognostication. The thermodynamic response of the brake disc during emergency braking is analyzed, and the fatigue life of the critical nodes is predicted based on the multiaxial stress state. The results reveal that the multiaxial stress in the bolt-hole region jointly contributes to the formation of fatigue damage, as opposed to being caused by a specific uniaxial one. Additionally, the evolution of fatigue crack propagation is further investigated by simulation analysis. The findings indicate that the propagation in axial is more likely to result in fatigue failure, compared to the radial direction. This study is supposed to provide insights into the mechanisms of thermal fatigue damage in wheel-mounted brake discs and offer guidance for the structural design of critical brake components as well as the development of effective maintenance strategies.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"174 ","pages":"Article 109525"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725002663","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study on thermal fatigue damage mechanisms for high-speed train’s wheel-mounted brake disc considering multiaxial stress state
The wheel-mounted brake disc is a critical component of the high-speed train brake system, and the bolt hole is identified as a high-risk region for fatigue failure in practice. This study proposes a thermal fatigue damage analysis method incorporating the multiaxial stress state to explore the complex failure mechanisms for wheel-mounted brake discs. A finite element model of a typical wheel-mounted brake disc is established and validated for a closer-to-reality prognostication. The thermodynamic response of the brake disc during emergency braking is analyzed, and the fatigue life of the critical nodes is predicted based on the multiaxial stress state. The results reveal that the multiaxial stress in the bolt-hole region jointly contributes to the formation of fatigue damage, as opposed to being caused by a specific uniaxial one. Additionally, the evolution of fatigue crack propagation is further investigated by simulation analysis. The findings indicate that the propagation in axial is more likely to result in fatigue failure, compared to the radial direction. This study is supposed to provide insights into the mechanisms of thermal fatigue damage in wheel-mounted brake discs and offer guidance for the structural design of critical brake components as well as the development of effective maintenance strategies.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.