真菌的隐性动物载体如何在不断变化的气候中影响森林健康,以及如何预测它们的出现

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2025-03-15 DOI:10.1007/s00253-025-13450-0
Yasin Korkmaz, Marta Bełka, Kathrin Blumenstein
{"title":"真菌的隐性动物载体如何在不断变化的气候中影响森林健康,以及如何预测它们的出现","authors":"Yasin Korkmaz,&nbsp;Marta Bełka,&nbsp;Kathrin Blumenstein","doi":"10.1007/s00253-025-13450-0","DOIUrl":null,"url":null,"abstract":"<p>Fungal spores are usually dispersed by wind, water, and animal vectors. Climate change is accelerating the spread of pathogens to new regions. While well-studied vectors like bark beetles and moths contribute to pathogen transmission, other, less-recognized animal species play a crucial role at different scales. Small-scale dispersers, such as mites, rodents, squirrels, and woodpeckers, facilitate fungal spread within trees or entire forest regions. On a larger scale, birds contribute significantly to long-distance fungal dispersal, potentially aiding the establishment of invasive species across continents. These vectors remain underexplored and are often overlooked in fungal disease studies and are therefore called cryptic vectors. Understanding the full range of dispersal mechanisms is critical as climate change drive shifts in species distributions and increases vector activity. Expanding monitoring and detection tools to include these hidden carriers will improve our ability to track the distribution of fungal pathogens. Integrating targeted research, innovative technologies, and collaborative efforts across disciplines and borders is essential for enhancing disease management and mitigating fungal disease’s ecological and economic impacts.</p><p><i>• Cryptic animal vectors play a critical role in fungal spore dispersal across forests and continents.</i></p><p><i>• Climate change accelerates fungal pathogen spread by altering species distributions, increasing vector activity, and facilitating long-distance dispersal.</i></p><p><i>• Innovative monitoring tools, like eDNA sampling and predictive modelling, are essential to uncover cryptic vector contributions and mitigate fungal disease impacts.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13450-0.pdf","citationCount":"0","resultStr":"{\"title\":\"How cryptic animal vectors of fungi can influence forest health in a changing climate and how to anticipate them\",\"authors\":\"Yasin Korkmaz,&nbsp;Marta Bełka,&nbsp;Kathrin Blumenstein\",\"doi\":\"10.1007/s00253-025-13450-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fungal spores are usually dispersed by wind, water, and animal vectors. Climate change is accelerating the spread of pathogens to new regions. While well-studied vectors like bark beetles and moths contribute to pathogen transmission, other, less-recognized animal species play a crucial role at different scales. Small-scale dispersers, such as mites, rodents, squirrels, and woodpeckers, facilitate fungal spread within trees or entire forest regions. On a larger scale, birds contribute significantly to long-distance fungal dispersal, potentially aiding the establishment of invasive species across continents. These vectors remain underexplored and are often overlooked in fungal disease studies and are therefore called cryptic vectors. Understanding the full range of dispersal mechanisms is critical as climate change drive shifts in species distributions and increases vector activity. Expanding monitoring and detection tools to include these hidden carriers will improve our ability to track the distribution of fungal pathogens. Integrating targeted research, innovative technologies, and collaborative efforts across disciplines and borders is essential for enhancing disease management and mitigating fungal disease’s ecological and economic impacts.</p><p><i>• Cryptic animal vectors play a critical role in fungal spore dispersal across forests and continents.</i></p><p><i>• Climate change accelerates fungal pathogen spread by altering species distributions, increasing vector activity, and facilitating long-distance dispersal.</i></p><p><i>• Innovative monitoring tools, like eDNA sampling and predictive modelling, are essential to uncover cryptic vector contributions and mitigate fungal disease impacts.</i></p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00253-025-13450-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00253-025-13450-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13450-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How cryptic animal vectors of fungi can influence forest health in a changing climate and how to anticipate them

Fungal spores are usually dispersed by wind, water, and animal vectors. Climate change is accelerating the spread of pathogens to new regions. While well-studied vectors like bark beetles and moths contribute to pathogen transmission, other, less-recognized animal species play a crucial role at different scales. Small-scale dispersers, such as mites, rodents, squirrels, and woodpeckers, facilitate fungal spread within trees or entire forest regions. On a larger scale, birds contribute significantly to long-distance fungal dispersal, potentially aiding the establishment of invasive species across continents. These vectors remain underexplored and are often overlooked in fungal disease studies and are therefore called cryptic vectors. Understanding the full range of dispersal mechanisms is critical as climate change drive shifts in species distributions and increases vector activity. Expanding monitoring and detection tools to include these hidden carriers will improve our ability to track the distribution of fungal pathogens. Integrating targeted research, innovative technologies, and collaborative efforts across disciplines and borders is essential for enhancing disease management and mitigating fungal disease’s ecological and economic impacts.

• Cryptic animal vectors play a critical role in fungal spore dispersal across forests and continents.

• Climate change accelerates fungal pathogen spread by altering species distributions, increasing vector activity, and facilitating long-distance dispersal.

• Innovative monitoring tools, like eDNA sampling and predictive modelling, are essential to uncover cryptic vector contributions and mitigate fungal disease impacts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
Engineered S. cerevisiae construction for high-gravity ethanol production and targeted metabolomics Genome-guided development of a bacterial two-strain system for low-temperature soil biocementation How cryptic animal vectors of fungi can influence forest health in a changing climate and how to anticipate them An adaptive, continuous substrate feeding strategy based on evolved gas to improve fed-batch ethanol fermentation Cultivation methods and biology of Lentinula edodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1