形态优化的ZnSnO3纳米五边形作为高效钙钛矿太阳能电池的高效电子传输层

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Solid State Chemistry Pub Date : 2025-03-13 DOI:10.1016/j.jssc.2025.125322
Sahaya Dennish Babu George , Karthikeyan Nagarajan , Ayeshamariam Abbas Ali , Swetha Madamala , Dhinesh Subramanian , Sarojini Kuppamuthu , Judith Jayarani Arockiasamy
{"title":"形态优化的ZnSnO3纳米五边形作为高效钙钛矿太阳能电池的高效电子传输层","authors":"Sahaya Dennish Babu George ,&nbsp;Karthikeyan Nagarajan ,&nbsp;Ayeshamariam Abbas Ali ,&nbsp;Swetha Madamala ,&nbsp;Dhinesh Subramanian ,&nbsp;Sarojini Kuppamuthu ,&nbsp;Judith Jayarani Arockiasamy","doi":"10.1016/j.jssc.2025.125322","DOIUrl":null,"url":null,"abstract":"<div><div>Ternary metal oxides with high optical transparency and wide bandgap semiconductors have gained significant attention as promising candidates for various optoelectronic device applications. In this study, ZnSnO<sub>3</sub> nanomaterials, synthesized in distinct nanopentagon and spherical nanoparticle morphologies, were prepared using hydrothermal and microwave-assisted synthesis methods. Structural analysis through X-ray diffraction (XRD) confirmed the perovskite phase of ZnSnO<sub>3</sub>. Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) revealed distinct morphological variations, while Energy Dispersive Spectroscopy (EDS) mapping validated the stoichiometric composition. X-ray Photoelectron Spectroscopy (XPS) further confirmed the oxidation states of Zn<sup>2+</sup>, Sn<sup>4+</sup>, and O<sup>2−</sup>. Optical studies from Ultraviolet–visible spectroscopy (UV–Vis) revealed bandgap values of 3.64 eV and 3.66 eV for ZnSnO<sub>3</sub> synthesized via hydrothermal and microwave methods, respectively. To evaluate their performance in optoelectronic applications, ZnSnO<sub>3</sub>-based electron transport layers (ETLs) were incorporated into an FTO/ZnSnO<sub>3</sub>/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>/Spiro-MeOTAD/Au perovskite solar cell architecture. Notably, hydrothermally synthesized ZnSnO<sub>3</sub> nanopentagon ETLs achieved a power conversion efficiency (PCE) of 17.73 %, outperforming the 14.28 % PCE obtained with microwave-synthesized spherical nanoparticles. This study underscores the potential of ZnSnO<sub>3</sub>-based ETLs for highly efficient perovskite solar cells (PSCs), emphasizing the impact of synthesis methods on device performance. By demonstrating the viability of ZnSnO<sub>3</sub> nanomaterials in advanced optoelectronic applications, this work lays the groundwork for further optimization and development of high-performance devices leveraging ternary metal oxides.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"347 ","pages":"Article 125322"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphology-optimized ZnSnO3 nanopentagons as efficient electron transport layers for high-efficient perovskite solar cells\",\"authors\":\"Sahaya Dennish Babu George ,&nbsp;Karthikeyan Nagarajan ,&nbsp;Ayeshamariam Abbas Ali ,&nbsp;Swetha Madamala ,&nbsp;Dhinesh Subramanian ,&nbsp;Sarojini Kuppamuthu ,&nbsp;Judith Jayarani Arockiasamy\",\"doi\":\"10.1016/j.jssc.2025.125322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ternary metal oxides with high optical transparency and wide bandgap semiconductors have gained significant attention as promising candidates for various optoelectronic device applications. In this study, ZnSnO<sub>3</sub> nanomaterials, synthesized in distinct nanopentagon and spherical nanoparticle morphologies, were prepared using hydrothermal and microwave-assisted synthesis methods. Structural analysis through X-ray diffraction (XRD) confirmed the perovskite phase of ZnSnO<sub>3</sub>. Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) revealed distinct morphological variations, while Energy Dispersive Spectroscopy (EDS) mapping validated the stoichiometric composition. X-ray Photoelectron Spectroscopy (XPS) further confirmed the oxidation states of Zn<sup>2+</sup>, Sn<sup>4+</sup>, and O<sup>2−</sup>. Optical studies from Ultraviolet–visible spectroscopy (UV–Vis) revealed bandgap values of 3.64 eV and 3.66 eV for ZnSnO<sub>3</sub> synthesized via hydrothermal and microwave methods, respectively. To evaluate their performance in optoelectronic applications, ZnSnO<sub>3</sub>-based electron transport layers (ETLs) were incorporated into an FTO/ZnSnO<sub>3</sub>/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>/Spiro-MeOTAD/Au perovskite solar cell architecture. Notably, hydrothermally synthesized ZnSnO<sub>3</sub> nanopentagon ETLs achieved a power conversion efficiency (PCE) of 17.73 %, outperforming the 14.28 % PCE obtained with microwave-synthesized spherical nanoparticles. This study underscores the potential of ZnSnO<sub>3</sub>-based ETLs for highly efficient perovskite solar cells (PSCs), emphasizing the impact of synthesis methods on device performance. By demonstrating the viability of ZnSnO<sub>3</sub> nanomaterials in advanced optoelectronic applications, this work lays the groundwork for further optimization and development of high-performance devices leveraging ternary metal oxides.</div></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"347 \",\"pages\":\"Article 125322\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459625001458\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625001458","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

具有高光学透明度和宽禁带半导体的三元金属氧化物作为各种光电器件应用的有前途的候选者受到了极大的关注。本研究采用水热和微波辅助合成的方法,制备了具有不同纳米五边形和球形形貌的ZnSnO3纳米材料。x射线衍射(XRD)结构分析证实了ZnSnO3为钙钛矿相。场发射扫描电镜(FESEM)和透射电镜(TEM)显示出明显的形态变化,而能量色散光谱(EDS)映射证实了化学计量成分。x射线光电子能谱(XPS)进一步证实了Zn2+、Sn4+和O2−的氧化态。紫外可见光谱(UV-Vis)研究表明,水热法和微波法合成的ZnSnO3的带隙值分别为3.64 eV和3.66 eV。为了评估其在光电应用中的性能,将基于ZnSnO3的电子传输层(etl)加入到FTO/ZnSnO3/CH3NH3PbI3/Spiro-MeOTAD/Au钙钛矿太阳能电池结构中。值得注意的是,水热合成的ZnSnO3纳米五边形etl的功率转换效率(PCE)为17.73%,优于微波合成的球形纳米粒子14.28%的PCE。本研究强调了znsno3基etl在高效钙钛矿太阳能电池(PSCs)中的潜力,强调了合成方法对器件性能的影响。通过证明ZnSnO3纳米材料在先进光电应用中的可行性,本工作为进一步优化和开发利用三元金属氧化物的高性能器件奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphology-optimized ZnSnO3 nanopentagons as efficient electron transport layers for high-efficient perovskite solar cells
Ternary metal oxides with high optical transparency and wide bandgap semiconductors have gained significant attention as promising candidates for various optoelectronic device applications. In this study, ZnSnO3 nanomaterials, synthesized in distinct nanopentagon and spherical nanoparticle morphologies, were prepared using hydrothermal and microwave-assisted synthesis methods. Structural analysis through X-ray diffraction (XRD) confirmed the perovskite phase of ZnSnO3. Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) revealed distinct morphological variations, while Energy Dispersive Spectroscopy (EDS) mapping validated the stoichiometric composition. X-ray Photoelectron Spectroscopy (XPS) further confirmed the oxidation states of Zn2+, Sn4+, and O2−. Optical studies from Ultraviolet–visible spectroscopy (UV–Vis) revealed bandgap values of 3.64 eV and 3.66 eV for ZnSnO3 synthesized via hydrothermal and microwave methods, respectively. To evaluate their performance in optoelectronic applications, ZnSnO3-based electron transport layers (ETLs) were incorporated into an FTO/ZnSnO3/CH3NH3PbI3/Spiro-MeOTAD/Au perovskite solar cell architecture. Notably, hydrothermally synthesized ZnSnO3 nanopentagon ETLs achieved a power conversion efficiency (PCE) of 17.73 %, outperforming the 14.28 % PCE obtained with microwave-synthesized spherical nanoparticles. This study underscores the potential of ZnSnO3-based ETLs for highly efficient perovskite solar cells (PSCs), emphasizing the impact of synthesis methods on device performance. By demonstrating the viability of ZnSnO3 nanomaterials in advanced optoelectronic applications, this work lays the groundwork for further optimization and development of high-performance devices leveraging ternary metal oxides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
期刊最新文献
Editorial Board Contents continued Interface engineering coupled with NiAl-LDH/Ti3C2Tx sacrificial template: Fabrication of 3D flower-like NiO/Al2O3/TiO2 composites and their DMF gas-sensing performances Magnetism, orbital splitting and electron–phonon coupling of chalcogenide "11" type iron-based superconductors under high pressure Iron and nickel vs. cobalt: Precipitation of tris-chelate phenanthroline complexes [ML3][B12Cl12] from the solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1