数据驱动逆强化学习,实现异质最优鲁棒编队控制。

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2025-03-14 DOI:10.1109/TCYB.2025.3546563
Fatemeh Mahdavi Golmisheh, Saeed Shamaghdari
{"title":"数据驱动逆强化学习,实现异质最优鲁棒编队控制。","authors":"Fatemeh Mahdavi Golmisheh, Saeed Shamaghdari","doi":"10.1109/TCYB.2025.3546563","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents novel data-driven inverse reinforcement learning (IRL) algorithms to optimally address heterogeneous formation control problems in the presence of disturbances. We propose expert-estimator-learner multiagent systems (MASs) as independent systems with similar interaction graphs. First, a model-based IRL algorithm is introduced for the estimator MAS to determine its optimal control and reward functions. Using the estimator IRL algorithm results, a robust algorithm for model-free IRL is presented to reconstruct the learner MAS's optimal control and reward functions without knowing the learners' dynamics. Therefore, estimator MAS aims to estimate experts' desired formation and learner MAS wants to track the estimators' trajectories optimally. As a final step, data-driven implementations of these proposed IRL algorithms are presented. Consequently, this research contributes to identifying unknown reward functions and optimal controls by conducting demonstrations. Our analysis shows that the stability and convergence of MASs are thoroughly ensured. The effectiveness of the given algorithms is demonstrated via simulation results.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Inverse Reinforcement Learning for Heterogeneous Optimal Robust Formation Control.\",\"authors\":\"Fatemeh Mahdavi Golmisheh, Saeed Shamaghdari\",\"doi\":\"10.1109/TCYB.2025.3546563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents novel data-driven inverse reinforcement learning (IRL) algorithms to optimally address heterogeneous formation control problems in the presence of disturbances. We propose expert-estimator-learner multiagent systems (MASs) as independent systems with similar interaction graphs. First, a model-based IRL algorithm is introduced for the estimator MAS to determine its optimal control and reward functions. Using the estimator IRL algorithm results, a robust algorithm for model-free IRL is presented to reconstruct the learner MAS's optimal control and reward functions without knowing the learners' dynamics. Therefore, estimator MAS aims to estimate experts' desired formation and learner MAS wants to track the estimators' trajectories optimally. As a final step, data-driven implementations of these proposed IRL algorithms are presented. Consequently, this research contributes to identifying unknown reward functions and optimal controls by conducting demonstrations. Our analysis shows that the stability and convergence of MASs are thoroughly ensured. The effectiveness of the given algorithms is demonstrated via simulation results.</p>\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TCYB.2025.3546563\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TCYB.2025.3546563","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Inverse Reinforcement Learning for Heterogeneous Optimal Robust Formation Control.

This article presents novel data-driven inverse reinforcement learning (IRL) algorithms to optimally address heterogeneous formation control problems in the presence of disturbances. We propose expert-estimator-learner multiagent systems (MASs) as independent systems with similar interaction graphs. First, a model-based IRL algorithm is introduced for the estimator MAS to determine its optimal control and reward functions. Using the estimator IRL algorithm results, a robust algorithm for model-free IRL is presented to reconstruct the learner MAS's optimal control and reward functions without knowing the learners' dynamics. Therefore, estimator MAS aims to estimate experts' desired formation and learner MAS wants to track the estimators' trajectories optimally. As a final step, data-driven implementations of these proposed IRL algorithms are presented. Consequently, this research contributes to identifying unknown reward functions and optimal controls by conducting demonstrations. Our analysis shows that the stability and convergence of MASs are thoroughly ensured. The effectiveness of the given algorithms is demonstrated via simulation results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
Secure Consensus for Switched Multiagent Systems Under DoS Attacks: Hybrid Event-Triggered and Impulsive Control Approach Table of Contents IEEE Transactions on Cybernetics IEEE Transactions on Cybernetics tcyb-cover2-fill-3548830
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1