润滑油在发动机活塞周围流动过程的光致变色可视化新技术的开发与应用

IF 2.5 3区 工程技术 Q2 ENGINEERING, MECHANICAL Experiments in Fluids Pub Date : 2025-03-17 DOI:10.1007/s00348-025-03997-z
Akihiko Azetsu, Masayuki Ochiai
{"title":"润滑油在发动机活塞周围流动过程的光致变色可视化新技术的开发与应用","authors":"Akihiko Azetsu,&nbsp;Masayuki Ochiai","doi":"10.1007/s00348-025-03997-z","DOIUrl":null,"url":null,"abstract":"<div><p>A new visualization technique using photochromism for the movement of oil film was developed and applied to an optical gasoline engine. A photochromic dye was dissolved in the oil and an arbitrary position of the oil film was illuminated by UV laser light, which makes a marker in the oil film via a photochromic reaction. The lifetime of color change by photochromism is relatively long and therefore, by tracking the movement of a marker makes it possible to visualize the movement of oil film directly. The color density was quantified based on the absorbance calculated from images taken before and after coloring in two wavelengths. Through the experimental and theoretical considerations, it was confirmed that the calculated absorbance is effective in reducing a noise originated by the color, the shape of the piston surface, the temporal variation of oil film thickness and the illuminating light intensity distribution. Furthermore, the value of the absorbance is in a very good linear relationship with the oil film thickness. This technique was applied to an optical gasoline engine and confirmed the availability of this technique. In the top land of piston surface, the oil film between the piston and cylinder liner was separated and the majority of the oil is at the piston surface and moved with the piston motion. The oil film thickness on the cylinder liner was very thin. On the contrary, at the piston skirt region, a wider region of the oil film is connected between the linear and the piston skirt. However, there are regions where the oil film between the liner and the skirt is separated by oil film rupture and the majority of the oil film is on the piston skirt. The change of the flow direction by the operating condition, i.e., the throttle condition, was able to clearly visualize, though the movement of oil film on the piston surface was very slow in normal case. The relatively fast complexed flow for opposite direction was also able to visualize by this technique.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and application of a new visualization technique using photochromism for transport process of lubricating oil around the engine piston\",\"authors\":\"Akihiko Azetsu,&nbsp;Masayuki Ochiai\",\"doi\":\"10.1007/s00348-025-03997-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new visualization technique using photochromism for the movement of oil film was developed and applied to an optical gasoline engine. A photochromic dye was dissolved in the oil and an arbitrary position of the oil film was illuminated by UV laser light, which makes a marker in the oil film via a photochromic reaction. The lifetime of color change by photochromism is relatively long and therefore, by tracking the movement of a marker makes it possible to visualize the movement of oil film directly. The color density was quantified based on the absorbance calculated from images taken before and after coloring in two wavelengths. Through the experimental and theoretical considerations, it was confirmed that the calculated absorbance is effective in reducing a noise originated by the color, the shape of the piston surface, the temporal variation of oil film thickness and the illuminating light intensity distribution. Furthermore, the value of the absorbance is in a very good linear relationship with the oil film thickness. This technique was applied to an optical gasoline engine and confirmed the availability of this technique. In the top land of piston surface, the oil film between the piston and cylinder liner was separated and the majority of the oil is at the piston surface and moved with the piston motion. The oil film thickness on the cylinder liner was very thin. On the contrary, at the piston skirt region, a wider region of the oil film is connected between the linear and the piston skirt. However, there are regions where the oil film between the liner and the skirt is separated by oil film rupture and the majority of the oil film is on the piston skirt. The change of the flow direction by the operating condition, i.e., the throttle condition, was able to clearly visualize, though the movement of oil film on the piston surface was very slow in normal case. The relatively fast complexed flow for opposite direction was also able to visualize by this technique.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-025-03997-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-03997-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用光致变色技术观察油膜运动的新方法,并将其应用于光学汽油机。将一种光致变色染料溶解在油中,用紫外激光照射油膜的任意位置,通过光致变色反应在油膜上形成标记。光致变色的变色寿命相对较长,因此,通过跟踪标记的运动,可以直观地观察油膜的运动。根据在两个波长上色前后的图像计算的吸光度来量化颜色密度。通过实验和理论分析,证实了所计算的吸光度能有效地消除由活塞表面颜色、形状、油膜厚度随时间变化和照明光强分布引起的噪声。吸光度值与油膜厚度呈很好的线性关系。将该技术应用于一台光学汽油机,验证了该技术的可行性。在活塞表面顶部,活塞与缸套之间的油膜被分离,大部分油在活塞表面并随活塞运动而移动。缸套上的油膜厚度很薄。相反,在活塞裙区,在直线与活塞裙之间连接了更宽的油膜区域。但也有因油膜破裂而使衬套与裙套之间的油膜分离的区域,且大部分油膜在活塞裙套上。尽管在正常情况下活塞表面的油膜运动非常缓慢,但在工作条件下,即节流条件下,流动方向的变化能够清晰地可视化。该技术还能对相对快速的反方向复杂流动进行可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and application of a new visualization technique using photochromism for transport process of lubricating oil around the engine piston

A new visualization technique using photochromism for the movement of oil film was developed and applied to an optical gasoline engine. A photochromic dye was dissolved in the oil and an arbitrary position of the oil film was illuminated by UV laser light, which makes a marker in the oil film via a photochromic reaction. The lifetime of color change by photochromism is relatively long and therefore, by tracking the movement of a marker makes it possible to visualize the movement of oil film directly. The color density was quantified based on the absorbance calculated from images taken before and after coloring in two wavelengths. Through the experimental and theoretical considerations, it was confirmed that the calculated absorbance is effective in reducing a noise originated by the color, the shape of the piston surface, the temporal variation of oil film thickness and the illuminating light intensity distribution. Furthermore, the value of the absorbance is in a very good linear relationship with the oil film thickness. This technique was applied to an optical gasoline engine and confirmed the availability of this technique. In the top land of piston surface, the oil film between the piston and cylinder liner was separated and the majority of the oil is at the piston surface and moved with the piston motion. The oil film thickness on the cylinder liner was very thin. On the contrary, at the piston skirt region, a wider region of the oil film is connected between the linear and the piston skirt. However, there are regions where the oil film between the liner and the skirt is separated by oil film rupture and the majority of the oil film is on the piston skirt. The change of the flow direction by the operating condition, i.e., the throttle condition, was able to clearly visualize, though the movement of oil film on the piston surface was very slow in normal case. The relatively fast complexed flow for opposite direction was also able to visualize by this technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
期刊最新文献
Characterizing near-wall downstream events during a vortex ring interacting with a perforated plate Unsteady spatial temperature characterization of AC-SDBD plasma actuation using a calibration schlieren technique An event-data-enhanced particle streak velocimetry based on the fusion of event- and frame-based cameras Jet characteristics in electrohydrodynamic spray: from single cone jet to multi-cone jets Correction to: The spectral response of time-resolved PIV in a turbulent boundary layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1