揭示Mn-O键在LaMnO3电催化甲醇氧化制增值甲酸中的作用

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-03-18 DOI:10.1021/acssuschemeng.4c10791
Xinlin Wang, Fan Zhou, Yunfei Gao, Yuhang Li, Bingxue Cheng, Toru Murayama, Tamao Ishida, Mingyue Lin, Guangli Xiu
{"title":"揭示Mn-O键在LaMnO3电催化甲醇氧化制增值甲酸中的作用","authors":"Xinlin Wang, Fan Zhou, Yunfei Gao, Yuhang Li, Bingxue Cheng, Toru Murayama, Tamao Ishida, Mingyue Lin, Guangli Xiu","doi":"10.1021/acssuschemeng.4c10791","DOIUrl":null,"url":null,"abstract":"Understanding the structure–activity relationships in perovskite catalysts is essential for advancing renewable electrochemical energy technologies. This study reports the exceptional performance of LaMnO<sub>3</sub> deposited on nickel foam (NF) electrodes in selective methanol electrooxidation. Experimental analyses reveal that the preferred crystalline facets of LaMnO<sub>3</sub> grown on nickel foams predominantly generate {110} facets, and this facet engineering effectively promotes the adsorption of methanol molecules. Moreover, the electronic structure of the Mn–O bonds on the LaMnO<sub>3</sub> surface has been optimized, resulting in good activity and approximately 100% Faradaic efficiency (FE) at current densities ranging from 100 to 500 mA cm<sup>–2</sup>. Notably, the total FE for formate demonstrates durability for up to 10 h at 100 mA cm<sup>–2</sup>, with selectivity exceeding 86%. This results in a substantial reduction (∼15.88%) in energy consumption for producing pure hydrogen. <i>In situ</i> studies indicate that the unique structure of LaMnO<sub>3</sub>/NF facilitates the formation of high-valent active Mn–O species and stabilizes the crystalline framework through an interfacial Mn–O network. This configuration provides abundant active sites and oxygen sources for converting methanol to formate, establishing a stable and efficient catalytic environment.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"11 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the Role of Mn–O Bonds in Electrocatalytic Methanol Oxidation to Value-Added Formate in LaMnO3\",\"authors\":\"Xinlin Wang, Fan Zhou, Yunfei Gao, Yuhang Li, Bingxue Cheng, Toru Murayama, Tamao Ishida, Mingyue Lin, Guangli Xiu\",\"doi\":\"10.1021/acssuschemeng.4c10791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the structure–activity relationships in perovskite catalysts is essential for advancing renewable electrochemical energy technologies. This study reports the exceptional performance of LaMnO<sub>3</sub> deposited on nickel foam (NF) electrodes in selective methanol electrooxidation. Experimental analyses reveal that the preferred crystalline facets of LaMnO<sub>3</sub> grown on nickel foams predominantly generate {110} facets, and this facet engineering effectively promotes the adsorption of methanol molecules. Moreover, the electronic structure of the Mn–O bonds on the LaMnO<sub>3</sub> surface has been optimized, resulting in good activity and approximately 100% Faradaic efficiency (FE) at current densities ranging from 100 to 500 mA cm<sup>–2</sup>. Notably, the total FE for formate demonstrates durability for up to 10 h at 100 mA cm<sup>–2</sup>, with selectivity exceeding 86%. This results in a substantial reduction (∼15.88%) in energy consumption for producing pure hydrogen. <i>In situ</i> studies indicate that the unique structure of LaMnO<sub>3</sub>/NF facilitates the formation of high-valent active Mn–O species and stabilizes the crystalline framework through an interfacial Mn–O network. This configuration provides abundant active sites and oxygen sources for converting methanol to formate, establishing a stable and efficient catalytic environment.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.4c10791\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c10791","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解钙钛矿催化剂的构效关系对推进可再生电化学能源技术至关重要。本研究报道了沉积在泡沫镍(NF)电极上的LaMnO3在选择性甲醇电氧化中的优异性能。实验分析表明,在泡沫镍表面生长的LaMnO3的优选晶面主要生成{110}晶面,这种晶面工程有效地促进了甲醇分子的吸附。此外,优化了LaMnO3表面Mn-O键的电子结构,使其在电流密度为100 ~ 500 mA cm-2时具有良好的活性和接近100%的法拉第效率(FE)。值得注意的是,甲酸酯的总FE在100 mA cm-2下的耐久性可达10小时,选择性超过86%。这使得生产纯氢的能耗大幅降低(约15.88%)。原位研究表明,LaMnO3/NF的独特结构促进了高价活性Mn-O的形成,并通过界面Mn-O网络稳定了晶体框架。这种构型为甲醇转化为甲酸酯提供了丰富的活性位点和氧源,建立了稳定高效的催化环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing the Role of Mn–O Bonds in Electrocatalytic Methanol Oxidation to Value-Added Formate in LaMnO3
Understanding the structure–activity relationships in perovskite catalysts is essential for advancing renewable electrochemical energy technologies. This study reports the exceptional performance of LaMnO3 deposited on nickel foam (NF) electrodes in selective methanol electrooxidation. Experimental analyses reveal that the preferred crystalline facets of LaMnO3 grown on nickel foams predominantly generate {110} facets, and this facet engineering effectively promotes the adsorption of methanol molecules. Moreover, the electronic structure of the Mn–O bonds on the LaMnO3 surface has been optimized, resulting in good activity and approximately 100% Faradaic efficiency (FE) at current densities ranging from 100 to 500 mA cm–2. Notably, the total FE for formate demonstrates durability for up to 10 h at 100 mA cm–2, with selectivity exceeding 86%. This results in a substantial reduction (∼15.88%) in energy consumption for producing pure hydrogen. In situ studies indicate that the unique structure of LaMnO3/NF facilitates the formation of high-valent active Mn–O species and stabilizes the crystalline framework through an interfacial Mn–O network. This configuration provides abundant active sites and oxygen sources for converting methanol to formate, establishing a stable and efficient catalytic environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Special Issue: Scientific and Technological Frameworks for Differentiated Natural Gas Special Issue: Scientific and Technological Frameworks for Differentiated Natural Gas Enhancing the Comprehensive Performance of Proton Exchange Membrane Fuel Cells through a Novel Aramid Nanofiber/Cellulose Nanofibers Grafted with Methyl Methacrylate-Modified Carbon Paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1