{"title":"高容量钠离子电池用Na4Fe3(PO4)2P2O7阴极高压抑制晶格畸变的研究","authors":"Linlin Zhou, Haifeng Yu, Chenwei Li, Ling Chen, Hao Jiang","doi":"10.1021/acssuschemeng.5c01027","DOIUrl":null,"url":null,"abstract":"The Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (NFPP) cathode exhibits great potential for low-cost, high-safety, and long-life Na-ion batteries, yet lattice distortion at a high voltage of >3.1 V easily causes irreversible Na-ion extraction/insertion in pentagonal pyramid position (Na4 site). Herein, we forecast the elemental doping site according to the deviation degree and then realize the successful occupation of Li ions in Na4 sites of NFPP. The density functional theory calculations and experimental results verify that the Li ions in Na4 sites are not involved in the de/sodiation process but effectively hinder the shift of Fe along the <i>a</i>-axis and the distortion of P<sub>2</sub>O<sub>7</sub> dime with well-maintained Na-ion diffusion paths even under high operation voltages. Consequently, Li-doped NFPP delivers an ultrahigh initial charge capacity of 128.7 mAh g<sup>–1</sup> (theoretical value: 129 mAh g<sup>–1</sup>) with a Coulombic efficiency of 87.9%. It also exhibits a superior capacity retention of 95.7% after 150 times at 1C with a predictively long-term cycle life of 80% after 5589 h. The increase in energy density of Fe-based phosphate cathodes is reckoned to further accelerate their large-scale applications in energy storage systems.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"24 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Lattice Distortion of Na4Fe3(PO4)2P2O7 Cathodes at High Voltage for High-Capacity Na-Ion Batteries\",\"authors\":\"Linlin Zhou, Haifeng Yu, Chenwei Li, Ling Chen, Hao Jiang\",\"doi\":\"10.1021/acssuschemeng.5c01027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (NFPP) cathode exhibits great potential for low-cost, high-safety, and long-life Na-ion batteries, yet lattice distortion at a high voltage of >3.1 V easily causes irreversible Na-ion extraction/insertion in pentagonal pyramid position (Na4 site). Herein, we forecast the elemental doping site according to the deviation degree and then realize the successful occupation of Li ions in Na4 sites of NFPP. The density functional theory calculations and experimental results verify that the Li ions in Na4 sites are not involved in the de/sodiation process but effectively hinder the shift of Fe along the <i>a</i>-axis and the distortion of P<sub>2</sub>O<sub>7</sub> dime with well-maintained Na-ion diffusion paths even under high operation voltages. Consequently, Li-doped NFPP delivers an ultrahigh initial charge capacity of 128.7 mAh g<sup>–1</sup> (theoretical value: 129 mAh g<sup>–1</sup>) with a Coulombic efficiency of 87.9%. It also exhibits a superior capacity retention of 95.7% after 150 times at 1C with a predictively long-term cycle life of 80% after 5589 h. The increase in energy density of Fe-based phosphate cathodes is reckoned to further accelerate their large-scale applications in energy storage systems.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.5c01027\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.5c01027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
Na4Fe3(PO4)2P2O7 (NFPP)阴极在低成本、高安全性和长寿命的钠离子电池中具有很大的潜力,但在3.1 V的高压下晶格畸变容易导致钠离子在五边形金字塔位置(Na4位点)不可逆的提取/插入。在此,我们根据偏离程度预测元素掺杂位点,从而实现Li离子在NFPP的Na4位点的成功占据。密度泛函数理论计算和实验结果证实,在高工作电压下,Na4位的Li离子不参与脱/钠化过程,但能有效地阻碍Fe沿a轴的位移和P2O7的畸变,保持良好的na离子扩散路径。因此,锂掺杂的NFPP提供了128.7 mAh g-1的超高初始充电容量(理论值为129 mAh g-1),库仑效率为87.9%。它还显示出在1C下150次后的优异容量保持率为95.7%,在5589 h后的预测长期循环寿命为80%。铁基磷酸盐阴极的能量密度的增加被认为进一步加速了它们在储能系统中的大规模应用。
Mitigating Lattice Distortion of Na4Fe3(PO4)2P2O7 Cathodes at High Voltage for High-Capacity Na-Ion Batteries
The Na4Fe3(PO4)2P2O7 (NFPP) cathode exhibits great potential for low-cost, high-safety, and long-life Na-ion batteries, yet lattice distortion at a high voltage of >3.1 V easily causes irreversible Na-ion extraction/insertion in pentagonal pyramid position (Na4 site). Herein, we forecast the elemental doping site according to the deviation degree and then realize the successful occupation of Li ions in Na4 sites of NFPP. The density functional theory calculations and experimental results verify that the Li ions in Na4 sites are not involved in the de/sodiation process but effectively hinder the shift of Fe along the a-axis and the distortion of P2O7 dime with well-maintained Na-ion diffusion paths even under high operation voltages. Consequently, Li-doped NFPP delivers an ultrahigh initial charge capacity of 128.7 mAh g–1 (theoretical value: 129 mAh g–1) with a Coulombic efficiency of 87.9%. It also exhibits a superior capacity retention of 95.7% after 150 times at 1C with a predictively long-term cycle life of 80% after 5589 h. The increase in energy density of Fe-based phosphate cathodes is reckoned to further accelerate their large-scale applications in energy storage systems.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.