高容量钠离子电池用Na4Fe3(PO4)2P2O7阴极高压抑制晶格畸变的研究

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-03-17 DOI:10.1021/acssuschemeng.5c01027
Linlin Zhou, Haifeng Yu, Chenwei Li, Ling Chen, Hao Jiang
{"title":"高容量钠离子电池用Na4Fe3(PO4)2P2O7阴极高压抑制晶格畸变的研究","authors":"Linlin Zhou, Haifeng Yu, Chenwei Li, Ling Chen, Hao Jiang","doi":"10.1021/acssuschemeng.5c01027","DOIUrl":null,"url":null,"abstract":"The Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (NFPP) cathode exhibits great potential for low-cost, high-safety, and long-life Na-ion batteries, yet lattice distortion at a high voltage of &gt;3.1 V easily causes irreversible Na-ion extraction/insertion in pentagonal pyramid position (Na4 site). Herein, we forecast the elemental doping site according to the deviation degree and then realize the successful occupation of Li ions in Na4 sites of NFPP. The density functional theory calculations and experimental results verify that the Li ions in Na4 sites are not involved in the de/sodiation process but effectively hinder the shift of Fe along the <i>a</i>-axis and the distortion of P<sub>2</sub>O<sub>7</sub> dime with well-maintained Na-ion diffusion paths even under high operation voltages. Consequently, Li-doped NFPP delivers an ultrahigh initial charge capacity of 128.7 mAh g<sup>–1</sup> (theoretical value: 129 mAh g<sup>–1</sup>) with a Coulombic efficiency of 87.9%. It also exhibits a superior capacity retention of 95.7% after 150 times at 1C with a predictively long-term cycle life of 80% after 5589 h. The increase in energy density of Fe-based phosphate cathodes is reckoned to further accelerate their large-scale applications in energy storage systems.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"24 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Lattice Distortion of Na4Fe3(PO4)2P2O7 Cathodes at High Voltage for High-Capacity Na-Ion Batteries\",\"authors\":\"Linlin Zhou, Haifeng Yu, Chenwei Li, Ling Chen, Hao Jiang\",\"doi\":\"10.1021/acssuschemeng.5c01027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (NFPP) cathode exhibits great potential for low-cost, high-safety, and long-life Na-ion batteries, yet lattice distortion at a high voltage of &gt;3.1 V easily causes irreversible Na-ion extraction/insertion in pentagonal pyramid position (Na4 site). Herein, we forecast the elemental doping site according to the deviation degree and then realize the successful occupation of Li ions in Na4 sites of NFPP. The density functional theory calculations and experimental results verify that the Li ions in Na4 sites are not involved in the de/sodiation process but effectively hinder the shift of Fe along the <i>a</i>-axis and the distortion of P<sub>2</sub>O<sub>7</sub> dime with well-maintained Na-ion diffusion paths even under high operation voltages. Consequently, Li-doped NFPP delivers an ultrahigh initial charge capacity of 128.7 mAh g<sup>–1</sup> (theoretical value: 129 mAh g<sup>–1</sup>) with a Coulombic efficiency of 87.9%. It also exhibits a superior capacity retention of 95.7% after 150 times at 1C with a predictively long-term cycle life of 80% after 5589 h. The increase in energy density of Fe-based phosphate cathodes is reckoned to further accelerate their large-scale applications in energy storage systems.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.5c01027\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.5c01027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Na4Fe3(PO4)2P2O7 (NFPP)阴极在低成本、高安全性和长寿命的钠离子电池中具有很大的潜力,但在3.1 V的高压下晶格畸变容易导致钠离子在五边形金字塔位置(Na4位点)不可逆的提取/插入。在此,我们根据偏离程度预测元素掺杂位点,从而实现Li离子在NFPP的Na4位点的成功占据。密度泛函数理论计算和实验结果证实,在高工作电压下,Na4位的Li离子不参与脱/钠化过程,但能有效地阻碍Fe沿a轴的位移和P2O7的畸变,保持良好的na离子扩散路径。因此,锂掺杂的NFPP提供了128.7 mAh g-1的超高初始充电容量(理论值为129 mAh g-1),库仑效率为87.9%。它还显示出在1C下150次后的优异容量保持率为95.7%,在5589 h后的预测长期循环寿命为80%。铁基磷酸盐阴极的能量密度的增加被认为进一步加速了它们在储能系统中的大规模应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigating Lattice Distortion of Na4Fe3(PO4)2P2O7 Cathodes at High Voltage for High-Capacity Na-Ion Batteries
The Na4Fe3(PO4)2P2O7 (NFPP) cathode exhibits great potential for low-cost, high-safety, and long-life Na-ion batteries, yet lattice distortion at a high voltage of >3.1 V easily causes irreversible Na-ion extraction/insertion in pentagonal pyramid position (Na4 site). Herein, we forecast the elemental doping site according to the deviation degree and then realize the successful occupation of Li ions in Na4 sites of NFPP. The density functional theory calculations and experimental results verify that the Li ions in Na4 sites are not involved in the de/sodiation process but effectively hinder the shift of Fe along the a-axis and the distortion of P2O7 dime with well-maintained Na-ion diffusion paths even under high operation voltages. Consequently, Li-doped NFPP delivers an ultrahigh initial charge capacity of 128.7 mAh g–1 (theoretical value: 129 mAh g–1) with a Coulombic efficiency of 87.9%. It also exhibits a superior capacity retention of 95.7% after 150 times at 1C with a predictively long-term cycle life of 80% after 5589 h. The increase in energy density of Fe-based phosphate cathodes is reckoned to further accelerate their large-scale applications in energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Special Issue: Scientific and Technological Frameworks for Differentiated Natural Gas Special Issue: Scientific and Technological Frameworks for Differentiated Natural Gas Enhancing the Comprehensive Performance of Proton Exchange Membrane Fuel Cells through a Novel Aramid Nanofiber/Cellulose Nanofibers Grafted with Methyl Methacrylate-Modified Carbon Paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1