Naiara Larreina Vicente, Mangala Srinivas, Oya Tagit
{"title":"从核到壳的全氟碳负载聚(丙交酯-羟基乙酸酯)纳米颗粒:表面活性剂对颗粒超微结构、刚度和细胞摄取的多方面影响。","authors":"Naiara Larreina Vicente, Mangala Srinivas, Oya Tagit","doi":"10.1021/acsapm.4c03360","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(lactide-<i>co</i>-glycolide) nanoparticles (PLGA NPs) loaded with Perfluoro-15-crown-5-ether (PFCE) have been developed for imaging applications. A slight modification of the formulation led to the formation of two distinct particle ultrastructures: multicore particles (MCPs) and core-shell particles (CSPs), where poly(vinyl alcohol) (PVA), a nonionic surfactant, and sodium cholate (NaCh), an anionic surfactant, were used, respectively. Despite their similar composition and colloidal characteristics, these particles have previously demonstrated significant differences in their <i>in vivo</i> distribution and clearance. We hypothesize that these differences are collectively driven by variations in their structural, chemical, and mechanical properties, which are investigated in this study. Nanomechanical characterizations of MCPs and CSPs by atomic force microscopy (AFM) revealed elastic modulus values of 54 and 270 MPa in water, respectively, indicating a better permeability and deformability of the multicore ultrastructure. The impact of the surfactant on the NP surface chemistry was evidenced by their protein corona, which was significantly greater in the CSPs. Additionally, an important amount of residual NaCh was found on the surface of CSPs, which formed strong interactions with bovine serum albumin (BSA), accounting for the difference in protein coronas and surface chemistry. Surprisingly, <i>in vitro</i> cell uptake studies showed a higher uptake of MCPs by RAW macrophages but a preference for CSPs by HeLa cells. We conclude that for this specific formulation and in this stiffness range, mechanical differences have a stronger impact in HeLa cells, while surface properties and chemical recognition play a more important role in uptake by macrophages. Overall, the extent to which a physical factor impacts cell uptake is highly dependent on the specific uptake mechanism. With this study, we provide an integrated perspective on the role of different surfactants in the particle formation process, their impact on particle ultrastructure, mechanical properties, and surface chemistry, and the overall effect on cell uptake <i>in vitro</i>.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 5","pages":"2864-2878"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915196/pdf/","citationCount":"0","resultStr":"{\"title\":\"Perfluorocarbon-Loaded Poly(lactide-<i>co</i>-glycolide) Nanoparticles from Core to Crust: Multifaceted Impact of Surfactant on Particle Ultrastructure, Stiffness, and Cell Uptake.\",\"authors\":\"Naiara Larreina Vicente, Mangala Srinivas, Oya Tagit\",\"doi\":\"10.1021/acsapm.4c03360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poly(lactide-<i>co</i>-glycolide) nanoparticles (PLGA NPs) loaded with Perfluoro-15-crown-5-ether (PFCE) have been developed for imaging applications. A slight modification of the formulation led to the formation of two distinct particle ultrastructures: multicore particles (MCPs) and core-shell particles (CSPs), where poly(vinyl alcohol) (PVA), a nonionic surfactant, and sodium cholate (NaCh), an anionic surfactant, were used, respectively. Despite their similar composition and colloidal characteristics, these particles have previously demonstrated significant differences in their <i>in vivo</i> distribution and clearance. We hypothesize that these differences are collectively driven by variations in their structural, chemical, and mechanical properties, which are investigated in this study. Nanomechanical characterizations of MCPs and CSPs by atomic force microscopy (AFM) revealed elastic modulus values of 54 and 270 MPa in water, respectively, indicating a better permeability and deformability of the multicore ultrastructure. The impact of the surfactant on the NP surface chemistry was evidenced by their protein corona, which was significantly greater in the CSPs. Additionally, an important amount of residual NaCh was found on the surface of CSPs, which formed strong interactions with bovine serum albumin (BSA), accounting for the difference in protein coronas and surface chemistry. Surprisingly, <i>in vitro</i> cell uptake studies showed a higher uptake of MCPs by RAW macrophages but a preference for CSPs by HeLa cells. We conclude that for this specific formulation and in this stiffness range, mechanical differences have a stronger impact in HeLa cells, while surface properties and chemical recognition play a more important role in uptake by macrophages. Overall, the extent to which a physical factor impacts cell uptake is highly dependent on the specific uptake mechanism. With this study, we provide an integrated perspective on the role of different surfactants in the particle formation process, their impact on particle ultrastructure, mechanical properties, and surface chemistry, and the overall effect on cell uptake <i>in vitro</i>.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"7 5\",\"pages\":\"2864-2878\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915196/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsapm.4c03360\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsapm.4c03360","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Perfluorocarbon-Loaded Poly(lactide-co-glycolide) Nanoparticles from Core to Crust: Multifaceted Impact of Surfactant on Particle Ultrastructure, Stiffness, and Cell Uptake.
Poly(lactide-co-glycolide) nanoparticles (PLGA NPs) loaded with Perfluoro-15-crown-5-ether (PFCE) have been developed for imaging applications. A slight modification of the formulation led to the formation of two distinct particle ultrastructures: multicore particles (MCPs) and core-shell particles (CSPs), where poly(vinyl alcohol) (PVA), a nonionic surfactant, and sodium cholate (NaCh), an anionic surfactant, were used, respectively. Despite their similar composition and colloidal characteristics, these particles have previously demonstrated significant differences in their in vivo distribution and clearance. We hypothesize that these differences are collectively driven by variations in their structural, chemical, and mechanical properties, which are investigated in this study. Nanomechanical characterizations of MCPs and CSPs by atomic force microscopy (AFM) revealed elastic modulus values of 54 and 270 MPa in water, respectively, indicating a better permeability and deformability of the multicore ultrastructure. The impact of the surfactant on the NP surface chemistry was evidenced by their protein corona, which was significantly greater in the CSPs. Additionally, an important amount of residual NaCh was found on the surface of CSPs, which formed strong interactions with bovine serum albumin (BSA), accounting for the difference in protein coronas and surface chemistry. Surprisingly, in vitro cell uptake studies showed a higher uptake of MCPs by RAW macrophages but a preference for CSPs by HeLa cells. We conclude that for this specific formulation and in this stiffness range, mechanical differences have a stronger impact in HeLa cells, while surface properties and chemical recognition play a more important role in uptake by macrophages. Overall, the extent to which a physical factor impacts cell uptake is highly dependent on the specific uptake mechanism. With this study, we provide an integrated perspective on the role of different surfactants in the particle formation process, their impact on particle ultrastructure, mechanical properties, and surface chemistry, and the overall effect on cell uptake in vitro.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.