通过纳米级和宏观结构优化,设计具有优异宽带微波吸收性能的轻质蜂窝状结构CB/SiO2复合材料

IF 11.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2025-03-20 DOI:10.1016/j.carbon.2025.120249
Xueping Wu , Haixia Huang , Kui Wang , Youjun Jiang , Yang Zhang , Shi Jin , Jianfei Zhu , Xianlong Zhang
{"title":"通过纳米级和宏观结构优化,设计具有优异宽带微波吸收性能的轻质蜂窝状结构CB/SiO2复合材料","authors":"Xueping Wu ,&nbsp;Haixia Huang ,&nbsp;Kui Wang ,&nbsp;Youjun Jiang ,&nbsp;Yang Zhang ,&nbsp;Shi Jin ,&nbsp;Jianfei Zhu ,&nbsp;Xianlong Zhang","doi":"10.1016/j.carbon.2025.120249","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving broadband electromagnetic wave absorption remains a critical challenge in the field of microwave absorption (MA), particularly due to the difficulty in attaining optimal impedance matching across a wide frequency range. This study addresses this issue by employing rational component optimization and advanced macrostructural design strategies. Silicon-coated carbon black (CB/SiO<sub>2</sub>) composites were synthesized via an improved sol-gel method, enabling precise modulation of electromagnetic parameters, impedance matching, and MA properties by controlling the content of tetraethyl orthosilicate (TEOS). This approach enhanced impedance matching and interface polarization, resulting in superior MA performance. Notably, the CB/SiO<sub>2</sub>-0.5 composite achieved a minimum reflection loss (RL<sub>min</sub>) of −63.03 dB at a thickness of 2.0 mm with a filler loading of 10 wt%. To further enhance broadband absorption, a macroscopic honeycomb-structured absorber based on CB/SiO<sub>2</sub>-0.5 was designed using electromagnetic simulation software (CST). The resulting absorber demonstrated an exceptional maximum effective absorption bandwidth (EAB<sub>max</sub>) of 12.048 GHz. Simulated S-parameters confirmed that the honeycomb structure significantly improved impedance matching across a broad frequency range compared to the CB/SiO<sub>2</sub> flat structure alone. This study not only establishes a scalable method for fabricating high-performance MA materials but also highlights the potential of electromagnetic simulations in optimizing absorber designs for broadband applications.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"238 ","pages":"Article 120249"},"PeriodicalIF":11.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing lightweight honeycomb-structured CB/SiO2 composites for exceptional broadband microwave absorption through nanoscale and macrostructural optimization\",\"authors\":\"Xueping Wu ,&nbsp;Haixia Huang ,&nbsp;Kui Wang ,&nbsp;Youjun Jiang ,&nbsp;Yang Zhang ,&nbsp;Shi Jin ,&nbsp;Jianfei Zhu ,&nbsp;Xianlong Zhang\",\"doi\":\"10.1016/j.carbon.2025.120249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Achieving broadband electromagnetic wave absorption remains a critical challenge in the field of microwave absorption (MA), particularly due to the difficulty in attaining optimal impedance matching across a wide frequency range. This study addresses this issue by employing rational component optimization and advanced macrostructural design strategies. Silicon-coated carbon black (CB/SiO<sub>2</sub>) composites were synthesized via an improved sol-gel method, enabling precise modulation of electromagnetic parameters, impedance matching, and MA properties by controlling the content of tetraethyl orthosilicate (TEOS). This approach enhanced impedance matching and interface polarization, resulting in superior MA performance. Notably, the CB/SiO<sub>2</sub>-0.5 composite achieved a minimum reflection loss (RL<sub>min</sub>) of −63.03 dB at a thickness of 2.0 mm with a filler loading of 10 wt%. To further enhance broadband absorption, a macroscopic honeycomb-structured absorber based on CB/SiO<sub>2</sub>-0.5 was designed using electromagnetic simulation software (CST). The resulting absorber demonstrated an exceptional maximum effective absorption bandwidth (EAB<sub>max</sub>) of 12.048 GHz. Simulated S-parameters confirmed that the honeycomb structure significantly improved impedance matching across a broad frequency range compared to the CB/SiO<sub>2</sub> flat structure alone. This study not only establishes a scalable method for fabricating high-performance MA materials but also highlights the potential of electromagnetic simulations in optimizing absorber designs for broadband applications.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"238 \",\"pages\":\"Article 120249\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622325002659\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325002659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

实现宽带电磁波吸收仍然是微波吸收(MA)领域的一个关键挑战,特别是由于难以在宽频率范围内实现最佳阻抗匹配。本研究采用合理的构件优化和先进的宏观结构设计策略来解决这一问题。采用改进的溶胶-凝胶法合成了硅包覆炭黑(CB/SiO2)复合材料,通过控制正硅酸四乙酯(TEOS)的含量,实现了电磁参数、阻抗匹配和MA性能的精确调制。这种方法增强了阻抗匹配和界面极化,从而获得了优异的毫安性能。值得注意的是,CB/SiO2-0.5复合材料在厚度为2.0 mm、填充量为10 wt%时的最小反射损耗(RLmin)为- 63.03 dB。为了进一步增强宽带吸收,利用电磁仿真软件(CST)设计了基于CB/SiO2-0.5的宏观蜂窝状结构吸收体。结果表明,该吸收体具有12.048 GHz的最大有效吸收带宽(EABmax)。模拟s参数证实,与单独的CB/SiO2扁平结构相比,蜂窝结构显著改善了宽频率范围内的阻抗匹配。这项研究不仅建立了一种可扩展的制造高性能MA材料的方法,而且强调了电磁模拟在优化宽带应用吸收器设计中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing lightweight honeycomb-structured CB/SiO2 composites for exceptional broadband microwave absorption through nanoscale and macrostructural optimization
Achieving broadband electromagnetic wave absorption remains a critical challenge in the field of microwave absorption (MA), particularly due to the difficulty in attaining optimal impedance matching across a wide frequency range. This study addresses this issue by employing rational component optimization and advanced macrostructural design strategies. Silicon-coated carbon black (CB/SiO2) composites were synthesized via an improved sol-gel method, enabling precise modulation of electromagnetic parameters, impedance matching, and MA properties by controlling the content of tetraethyl orthosilicate (TEOS). This approach enhanced impedance matching and interface polarization, resulting in superior MA performance. Notably, the CB/SiO2-0.5 composite achieved a minimum reflection loss (RLmin) of −63.03 dB at a thickness of 2.0 mm with a filler loading of 10 wt%. To further enhance broadband absorption, a macroscopic honeycomb-structured absorber based on CB/SiO2-0.5 was designed using electromagnetic simulation software (CST). The resulting absorber demonstrated an exceptional maximum effective absorption bandwidth (EABmax) of 12.048 GHz. Simulated S-parameters confirmed that the honeycomb structure significantly improved impedance matching across a broad frequency range compared to the CB/SiO2 flat structure alone. This study not only establishes a scalable method for fabricating high-performance MA materials but also highlights the potential of electromagnetic simulations in optimizing absorber designs for broadband applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
The effect of carbon support on rhenium-catalyzed glyceric acid deoxydehydration into biobased acrylic acid Graphene oxide quantum dots as an additive in the electrolyte for enhanced cycle retention of zinc-ion secondary battery Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required Advantages of precursor with high graphitizability in the preparation of carbon-graphite sealing materials for excellent high-temperature wear performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1