Ti3C2Tx负载单原子Cu催化MgH2储氢

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-03-31 DOI:10.1021/acs.jpclett.5c00482
Heng Lu, Jianbo Li, Kunyan Nie, Ruilin Zhang, Yu’an Chen, Fusheng Pan
{"title":"Ti3C2Tx负载单原子Cu催化MgH2储氢","authors":"Heng Lu, Jianbo Li, Kunyan Nie, Ruilin Zhang, Yu’an Chen, Fusheng Pan","doi":"10.1021/acs.jpclett.5c00482","DOIUrl":null,"url":null,"abstract":"Magnesium hydride (MgH<sub>2</sub>) has been considered a promising hydrogen storage material, but its commercial application is severely limited by high operating temperature and slow de/hydrogenation kinetics. Herein, an efficient catalyst, Cu<sub>SA</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, is successfully synthesized by introducing a Cu single-atom into Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene nanosheets and applied to MgH<sub>2</sub>. The synthesized MgH<sub>2</sub> + 5 wt %Cu<sub>SA</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> (Cu<sub>SA</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/MgH<sub>2</sub>) composite exhibits low initial dehydrogenation temperature (<i>T</i> = 241.73 °C) and rapidly dehydrogenation kinetics (<i>E</i><sub>a</sub> = 76.38 kJ/mol H<sub>2</sub>). Impressively, the Cu<sub>SA</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/MgH<sub>2</sub> composite desorbs 3.3 wt % of hydrogen within 240 min at 180 °C after 20 cycles, as well as an initial dehydrogenation temperature of 164.29 °C. The superior catalytic effect of Cu<sub>SA</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> catalyst is ascribed to the numerous catalytic active area, in-situ-formed active metallic Ti, and multivalent Ti species, accelerating the electron transfer and weakening the strength of Mg–H bonds. In particular, the Cu single-atom improved the stability of Ti<sup>4+</sup> in Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, thereby enhancing its catalytic ability. This work provides a new perspective for ameliorating the catalytic ability of MXene.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"58 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Atom Cu Supported on Ti3C2Tx for Catalyzing Hydrogen Storage in MgH2\",\"authors\":\"Heng Lu, Jianbo Li, Kunyan Nie, Ruilin Zhang, Yu’an Chen, Fusheng Pan\",\"doi\":\"10.1021/acs.jpclett.5c00482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium hydride (MgH<sub>2</sub>) has been considered a promising hydrogen storage material, but its commercial application is severely limited by high operating temperature and slow de/hydrogenation kinetics. Herein, an efficient catalyst, Cu<sub>SA</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, is successfully synthesized by introducing a Cu single-atom into Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene nanosheets and applied to MgH<sub>2</sub>. The synthesized MgH<sub>2</sub> + 5 wt %Cu<sub>SA</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> (Cu<sub>SA</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/MgH<sub>2</sub>) composite exhibits low initial dehydrogenation temperature (<i>T</i> = 241.73 °C) and rapidly dehydrogenation kinetics (<i>E</i><sub>a</sub> = 76.38 kJ/mol H<sub>2</sub>). Impressively, the Cu<sub>SA</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/MgH<sub>2</sub> composite desorbs 3.3 wt % of hydrogen within 240 min at 180 °C after 20 cycles, as well as an initial dehydrogenation temperature of 164.29 °C. The superior catalytic effect of Cu<sub>SA</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> catalyst is ascribed to the numerous catalytic active area, in-situ-formed active metallic Ti, and multivalent Ti species, accelerating the electron transfer and weakening the strength of Mg–H bonds. In particular, the Cu single-atom improved the stability of Ti<sup>4+</sup> in Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, thereby enhancing its catalytic ability. This work provides a new perspective for ameliorating the catalytic ability of MXene.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.5c00482\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00482","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氢化镁(MgH2)被认为是一种很有前途的储氢材料,但其商业应用受到操作温度高和脱氢动力学慢的严重限制。本文通过在Ti3C2Tx MXene纳米片中引入Cu单原子,成功合成了CuSA/Ti3C2Tx高效催化剂,并将其应用于MgH2。合成的MgH2 + 5 wt %CuSA/Ti3C2Tx (CuSA/Ti3C2Tx/MgH2)复合材料具有较低的初始脱氢温度(T = 241.73℃)和快速的脱氢动力学(Ea = 76.38 kJ/mol H2)。令人印象深刻的是,CuSA/Ti3C2Tx/MgH2复合材料在180℃下,经过20次循环,在240 min内脱氢3.3 wt %,初始脱氢温度为164.29℃。CuSA/Ti3C2Tx催化剂之所以具有优异的催化效果,是因为其催化活性区众多,原位形成的活性金属Ti和多价Ti种加速了电子转移,减弱了Mg-H键的强度。特别是Cu单原子提高了Ti4+在Ti3C2Tx中的稳定性,从而增强了Ti3C2Tx的催化能力。本研究为提高MXene的催化性能提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-Atom Cu Supported on Ti3C2Tx for Catalyzing Hydrogen Storage in MgH2
Magnesium hydride (MgH2) has been considered a promising hydrogen storage material, but its commercial application is severely limited by high operating temperature and slow de/hydrogenation kinetics. Herein, an efficient catalyst, CuSA/Ti3C2Tx, is successfully synthesized by introducing a Cu single-atom into Ti3C2Tx MXene nanosheets and applied to MgH2. The synthesized MgH2 + 5 wt %CuSA/Ti3C2Tx (CuSA/Ti3C2Tx/MgH2) composite exhibits low initial dehydrogenation temperature (T = 241.73 °C) and rapidly dehydrogenation kinetics (Ea = 76.38 kJ/mol H2). Impressively, the CuSA/Ti3C2Tx/MgH2 composite desorbs 3.3 wt % of hydrogen within 240 min at 180 °C after 20 cycles, as well as an initial dehydrogenation temperature of 164.29 °C. The superior catalytic effect of CuSA/Ti3C2Tx catalyst is ascribed to the numerous catalytic active area, in-situ-formed active metallic Ti, and multivalent Ti species, accelerating the electron transfer and weakening the strength of Mg–H bonds. In particular, the Cu single-atom improved the stability of Ti4+ in Ti3C2Tx, thereby enhancing its catalytic ability. This work provides a new perspective for ameliorating the catalytic ability of MXene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Atomic Force Microscopy Captures Light-Induced Higher-Order Structural Dynamics in Photosystem II Supercomplexes. Predicting Complete Basis Set Limit Quasiparticle Energies from Triple-ζ Calculations How Crystal Size and Number Steer Asymmetric Crystallization Direct Experimental Evidence for Reverse Internal Conversion in the Relaxation Pathway of the Excited Anions Profiling the Electron Trap States of II-VI Chalcogenide Colloidal Quantum Dots.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1