可充电锌空气电池中稳定FeNi纳米粒子和Fe单原子的碳纳米管壁纳米工程策略

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2025-04-01 DOI:10.1039/D4QI03361B
Yi-Yin Yang, Lin He, Peng-Fei Xie, Peng Dong, Hao Quan, Tao Li, Lingzhe Fang, Dong Feng, Yubo Xing and Jin-Cheng Li
{"title":"可充电锌空气电池中稳定FeNi纳米粒子和Fe单原子的碳纳米管壁纳米工程策略","authors":"Yi-Yin Yang, Lin He, Peng-Fei Xie, Peng Dong, Hao Quan, Tao Li, Lingzhe Fang, Dong Feng, Yubo Xing and Jin-Cheng Li","doi":"10.1039/D4QI03361B","DOIUrl":null,"url":null,"abstract":"<p >The great interest in rechargeable Zn–air batteries (ZABs) stimulates extensive research on efficient and robust electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, a novel ORR/OER bifunctional catalyst is developed using carbon-nanotube wall nanoengineering. In this design, FeNi nanoparticles are inserted into the wall <em>via</em> a carbothermic reaction to enhance the OER, while isolated Fe atoms in iron-phthalocyanine anchored on the wall <em>via</em> π–π coupling interaction are used to catalyze the ORR. Accordingly, the resulting electrocatalyst exhibits outstanding ORR and OER activities such as a small potential difference of 0.67 V. <em>In situ</em> Raman spectroscopy measurements verify the presence of reconstruction transformation from an alloy phase to a high-activity spinel phase during the OER process. When used in ZABs, high peak power densities of 208.5 mW cm<small><sup>−2</sup></small> under a liquid-state electrolyte and 150.1 mW cm<small><sup>−2</sup></small> in a solid-state electrolyte are demonstrated. Furthermore, outstanding battery durability is illustrated by a small and stable charge–discharge voltage gap of 0.78 V at 10 mA cm<small><sup>−2</sup></small> after 1400 cycles. This study offers a novel method to fabricate bifunctional ORR/OER electrocatalysts and possibly extends to multi-site catalysts.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 14","pages":" 4409-4416"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon-nanotube wall nanoengineering strategy to stabilize FeNi nanoparticles and Fe single atoms for rechargeable Zn–air batteries†\",\"authors\":\"Yi-Yin Yang, Lin He, Peng-Fei Xie, Peng Dong, Hao Quan, Tao Li, Lingzhe Fang, Dong Feng, Yubo Xing and Jin-Cheng Li\",\"doi\":\"10.1039/D4QI03361B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The great interest in rechargeable Zn–air batteries (ZABs) stimulates extensive research on efficient and robust electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, a novel ORR/OER bifunctional catalyst is developed using carbon-nanotube wall nanoengineering. In this design, FeNi nanoparticles are inserted into the wall <em>via</em> a carbothermic reaction to enhance the OER, while isolated Fe atoms in iron-phthalocyanine anchored on the wall <em>via</em> π–π coupling interaction are used to catalyze the ORR. Accordingly, the resulting electrocatalyst exhibits outstanding ORR and OER activities such as a small potential difference of 0.67 V. <em>In situ</em> Raman spectroscopy measurements verify the presence of reconstruction transformation from an alloy phase to a high-activity spinel phase during the OER process. When used in ZABs, high peak power densities of 208.5 mW cm<small><sup>−2</sup></small> under a liquid-state electrolyte and 150.1 mW cm<small><sup>−2</sup></small> in a solid-state electrolyte are demonstrated. Furthermore, outstanding battery durability is illustrated by a small and stable charge–discharge voltage gap of 0.78 V at 10 mA cm<small><sup>−2</sup></small> after 1400 cycles. This study offers a novel method to fabricate bifunctional ORR/OER electrocatalysts and possibly extends to multi-site catalysts.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 14\",\"pages\":\" 4409-4416\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d4qi03361b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d4qi03361b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

可充电锌空气电池(ZABs)引起了人们对氧还原/析出反应(ORR/OER)高效、稳定电催化剂的广泛研究。本文采用碳纳米管壁纳米工程技术,研制了一种新型ORR/OER双功能催化剂。其中,FeNi纳米颗粒通过碳热反应插入壁以提高OER,而铁-酞菁中分离的Fe原子通过π-π偶联作用锚定在壁上以催化ORR。因此,所制得的电催化剂具有出色的ORR和OER活性,电位差很小,仅为0.67 V。原位拉曼光谱测量证实了在OER过程中存在从合金相到高活性尖晶石相的重建转变。当用于ZABs时,在液态电解质下的峰值功率密度为208.5 mW cm-2,在固态电解质下为150.1 mW cm-2。此外,在10ma cm-2下,经过1400次循环后,电池的充放电电压间隙小而稳定,为0.78 V,这表明电池具有出色的耐用性。该研究为制备双功能ORR/OER电催化剂提供了一种新方法,并有可能扩展到多位点催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon-nanotube wall nanoengineering strategy to stabilize FeNi nanoparticles and Fe single atoms for rechargeable Zn–air batteries†

The great interest in rechargeable Zn–air batteries (ZABs) stimulates extensive research on efficient and robust electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, a novel ORR/OER bifunctional catalyst is developed using carbon-nanotube wall nanoengineering. In this design, FeNi nanoparticles are inserted into the wall via a carbothermic reaction to enhance the OER, while isolated Fe atoms in iron-phthalocyanine anchored on the wall via π–π coupling interaction are used to catalyze the ORR. Accordingly, the resulting electrocatalyst exhibits outstanding ORR and OER activities such as a small potential difference of 0.67 V. In situ Raman spectroscopy measurements verify the presence of reconstruction transformation from an alloy phase to a high-activity spinel phase during the OER process. When used in ZABs, high peak power densities of 208.5 mW cm−2 under a liquid-state electrolyte and 150.1 mW cm−2 in a solid-state electrolyte are demonstrated. Furthermore, outstanding battery durability is illustrated by a small and stable charge–discharge voltage gap of 0.78 V at 10 mA cm−2 after 1400 cycles. This study offers a novel method to fabricate bifunctional ORR/OER electrocatalysts and possibly extends to multi-site catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Ultra-efficient energy transfer and near-infrared luminescence in hexagonal aluminate phosphors enabled by heterogeneous ion pairs co-doping Truss bridge-like anhydrous stacking in hybrid crystal triggers ultra-high stability and robust birefringence Bridging the gap: thymine segments to create single-strand versions of DNA2-[Ag₁₆Cl₂]8+ A low-loss optical waveguide from a 1D europium nanocluster Exciplex-based multi-stimuli-responsive luminescent materials: photo-recoverable mechanochromic luminescence for reusable paper applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1