TiO2上生长Ru的相依赖合成及其在太阳能驱动H2演化中的应用

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-04-03 DOI:10.1021/acssuschemeng.5c00412
Xiangyang Cao, Xiaohu Sun, Ganghua Zhou, Yuqi Gao, Yubo Zhou, Xiaozhi Wang, Jianjian Yi
{"title":"TiO2上生长Ru的相依赖合成及其在太阳能驱动H2演化中的应用","authors":"Xiangyang Cao, Xiaohu Sun, Ganghua Zhou, Yuqi Gao, Yubo Zhou, Xiaozhi Wang, Jianjian Yi","doi":"10.1021/acssuschemeng.5c00412","DOIUrl":null,"url":null,"abstract":"Crystal phase engineering provides a promising strategy for enhancing photocatalytic hydrogen evolution performance, yet the precise impact of phase structure on activity requires further exploration. In this study, hcp- and fcc-phase Ru nanoparticles were synthesized via precursor and solvent-controlled reduction processes and integrated with TiO<sub>2</sub>. Photocatalytic hydrogen evolution tests reveal that hcp-Ru/TiO<sub>2</sub> achieves the highest H<sub>2</sub> production rate of 23.52 μmol/h, surpassing fcc-Ru/TiO<sub>2</sub> (11.18 μmol/h) and bare TiO<sub>2</sub> (4.72 μmol/h). Electrochemical and photophysical analyses demonstrate that hcp-Ru/TiO<sub>2</sub> exhibits superior charge separation and transfer efficiency, as evidenced by the lowest charge transfer resistance, highest photocurrent response, and prolonged fluorescence lifetime. Theoretical calculations further confirm that hcp-Ru offers optimal hydrogen adsorption energy (Δ<i>G</i><sub>H*</sub> = −0.14 eV), contributing to reduced overpotential and enhanced catalytic activity. This work underscores the critical role of Ru crystal phases in driving photocatalytic performance and provides new insights into phase engineering for sustainable energy applications.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"24 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-Dependent Synthesis of Ru Grown on TiO2 for Solar Driven H2 Evolution\",\"authors\":\"Xiangyang Cao, Xiaohu Sun, Ganghua Zhou, Yuqi Gao, Yubo Zhou, Xiaozhi Wang, Jianjian Yi\",\"doi\":\"10.1021/acssuschemeng.5c00412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crystal phase engineering provides a promising strategy for enhancing photocatalytic hydrogen evolution performance, yet the precise impact of phase structure on activity requires further exploration. In this study, hcp- and fcc-phase Ru nanoparticles were synthesized via precursor and solvent-controlled reduction processes and integrated with TiO<sub>2</sub>. Photocatalytic hydrogen evolution tests reveal that hcp-Ru/TiO<sub>2</sub> achieves the highest H<sub>2</sub> production rate of 23.52 μmol/h, surpassing fcc-Ru/TiO<sub>2</sub> (11.18 μmol/h) and bare TiO<sub>2</sub> (4.72 μmol/h). Electrochemical and photophysical analyses demonstrate that hcp-Ru/TiO<sub>2</sub> exhibits superior charge separation and transfer efficiency, as evidenced by the lowest charge transfer resistance, highest photocurrent response, and prolonged fluorescence lifetime. Theoretical calculations further confirm that hcp-Ru offers optimal hydrogen adsorption energy (Δ<i>G</i><sub>H*</sub> = −0.14 eV), contributing to reduced overpotential and enhanced catalytic activity. This work underscores the critical role of Ru crystal phases in driving photocatalytic performance and provides new insights into phase engineering for sustainable energy applications.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.5c00412\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.5c00412","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶体相工程为提高光催化析氢性能提供了一种很有前途的策略,但相结构对活性的确切影响还需要进一步探索。在本研究中,通过前驱体和溶剂控制还原工艺合成了hcp-和fcc相的Ru纳米颗粒,并与TiO2集成。光催化析氢实验表明,hcp-Ru/TiO2的产氢率最高,为23.52 μmol/h,超过了fcc-Ru/TiO2 (11.18 μmol/h)和bare TiO2 (4.72 μmol/h)。电化学和光物理分析表明,hcp-Ru/TiO2具有优异的电荷分离和转移效率,表现为最低的电荷转移电阻、最高的光电流响应和较长的荧光寿命。理论计算进一步证实,hcp-Ru提供了最佳的氢吸附能(ΔGH* = - 0.14 eV),有助于降低过电位和提高催化活性。这项工作强调了Ru晶体相在驱动光催化性能方面的关键作用,并为可持续能源应用的相工程提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase-Dependent Synthesis of Ru Grown on TiO2 for Solar Driven H2 Evolution
Crystal phase engineering provides a promising strategy for enhancing photocatalytic hydrogen evolution performance, yet the precise impact of phase structure on activity requires further exploration. In this study, hcp- and fcc-phase Ru nanoparticles were synthesized via precursor and solvent-controlled reduction processes and integrated with TiO2. Photocatalytic hydrogen evolution tests reveal that hcp-Ru/TiO2 achieves the highest H2 production rate of 23.52 μmol/h, surpassing fcc-Ru/TiO2 (11.18 μmol/h) and bare TiO2 (4.72 μmol/h). Electrochemical and photophysical analyses demonstrate that hcp-Ru/TiO2 exhibits superior charge separation and transfer efficiency, as evidenced by the lowest charge transfer resistance, highest photocurrent response, and prolonged fluorescence lifetime. Theoretical calculations further confirm that hcp-Ru offers optimal hydrogen adsorption energy (ΔGH* = −0.14 eV), contributing to reduced overpotential and enhanced catalytic activity. This work underscores the critical role of Ru crystal phases in driving photocatalytic performance and provides new insights into phase engineering for sustainable energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Activating Lattice Oxygen Mechanism in IrOx@WO3 Composite Electrocatalyst for Enhanced Oxygen Evolution Performance Ultrarapid Electrosynthesis of HOF-102 Enables Multiscale Removal of Uremic Toxins Efficient Catalytic Production of 1,3,2-Dioxathiolane 2,2-Dioxide (DTD) Using In Situ-Generated H2O2 A Sustainable Hybrid Machining Method for Superalloy: Diamond Wire Electrochemical Grinding with Environmentally Benign Electrolyte (D-WECG) Green Manufacturing of Anisotropic MXene/Carboxymethyl Chitosan Aerogels from Renewable Biomass for Multifunctional Wearables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1