模拟贝壳衍生的CS/GO复合材料与仿生PAN纳米纤维膜结合用于增强骨组织再生。

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-04-21 Epub Date: 2025-04-04 DOI:10.1021/acsabm.4c01963
Balaganesh Danagody, Neeraja Bose, Swathi Sudhakar, Vimalraj Selvaraj, Kalaivizhi Rajappan
{"title":"模拟贝壳衍生的CS/GO复合材料与仿生PAN纳米纤维膜结合用于增强骨组织再生。","authors":"Balaganesh Danagody, Neeraja Bose, Swathi Sudhakar, Vimalraj Selvaraj, Kalaivizhi Rajappan","doi":"10.1021/acsabm.4c01963","DOIUrl":null,"url":null,"abstract":"<p><p>Bone regeneration is a process that aims to restore the structure and function of damaged bone tissues. Modern approaches for bone regeneration involve a combination of strategies, including tissue engineering and biomaterials, to promote healing. In this study, electrospun nanofibers were developed by using biosynthesized chitosan (CS)- and graphene oxide (GO)-loaded polyacrylonitrile (PAN) nanofibers. These scaffolds demonstrated stable mechanical support and capability to promote rapid bone defect repair. The physicochemical properties of the prepared nanoparticles and nanofibers were characterized using XRD and XPS analysis. The nanofiber morphology and structure of the CS/GO composite were analyzed through SEM and TEM. In vitro studies and ALP activity demonstrated the membranes capability to promote new bone formation and support healing, and Alizarin red staining highlighted the membrane's ability to enhance cell-cell interactions and increase calcium deposition, crucial for tissue regeneration. Cytotoxicity analysis revealed that 97.66 ± 1.5% of MG-63 cells remained viable on the surface of the prepared nanofiber, as assessed by the MTT assay. At the molecular level, real-time RT-PCR was used to examine the mRNA expression of Runx2 and type 1 collagen. Promoting osteogenic gene expression and enhancing mineral deposition on the prepared nanofiber show significant potential in accelerating bone healing and ensuring the successful integration of the scaffold with the surrounding bone tissue. Based on these findings, we conclude that the CS/GO@PAN nanofibrous membrane holds significant promise as a substrate for bone regeneration.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"3239-3253"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>Emerita Analoga</i> Shell-Derived CS/GO Composite Incorporated into a Biomimetic PAN Nanofiber Membrane for Enhanced Bone Tissue Regeneration.\",\"authors\":\"Balaganesh Danagody, Neeraja Bose, Swathi Sudhakar, Vimalraj Selvaraj, Kalaivizhi Rajappan\",\"doi\":\"10.1021/acsabm.4c01963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone regeneration is a process that aims to restore the structure and function of damaged bone tissues. Modern approaches for bone regeneration involve a combination of strategies, including tissue engineering and biomaterials, to promote healing. In this study, electrospun nanofibers were developed by using biosynthesized chitosan (CS)- and graphene oxide (GO)-loaded polyacrylonitrile (PAN) nanofibers. These scaffolds demonstrated stable mechanical support and capability to promote rapid bone defect repair. The physicochemical properties of the prepared nanoparticles and nanofibers were characterized using XRD and XPS analysis. The nanofiber morphology and structure of the CS/GO composite were analyzed through SEM and TEM. In vitro studies and ALP activity demonstrated the membranes capability to promote new bone formation and support healing, and Alizarin red staining highlighted the membrane's ability to enhance cell-cell interactions and increase calcium deposition, crucial for tissue regeneration. Cytotoxicity analysis revealed that 97.66 ± 1.5% of MG-63 cells remained viable on the surface of the prepared nanofiber, as assessed by the MTT assay. At the molecular level, real-time RT-PCR was used to examine the mRNA expression of Runx2 and type 1 collagen. Promoting osteogenic gene expression and enhancing mineral deposition on the prepared nanofiber show significant potential in accelerating bone healing and ensuring the successful integration of the scaffold with the surrounding bone tissue. Based on these findings, we conclude that the CS/GO@PAN nanofibrous membrane holds significant promise as a substrate for bone regeneration.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"3239-3253\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.4c01963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

骨再生是一个旨在恢复受损骨组织结构和功能的过程。骨再生的现代方法涉及多种策略的结合,包括组织工程和生物材料,以促进愈合。本研究采用生物合成壳聚糖(CS)-和氧化石墨烯(GO)-负载聚丙烯腈(PAN)纳米纤维,制备了电纺丝纳米纤维。这些支架表现出稳定的机械支持和促进骨缺损快速修复的能力。采用XRD和XPS对制备的纳米颗粒和纳米纤维的理化性质进行了表征。通过扫描电镜和透射电镜分析了CS/GO复合材料的纳米纤维形态和结构。体外研究和ALP活性证明了膜促进新骨形成和支持愈合的能力,茜素红染色突出了膜增强细胞间相互作用和增加钙沉积的能力,这对组织再生至关重要。细胞毒性分析显示,MTT法测定制备的纳米纤维表面仍有97.66±1.5%的MG-63细胞存活。在分子水平上,采用实时RT-PCR检测Runx2和1型胶原mRNA的表达。促进成骨基因表达和增强纳米纤维上的矿物质沉积在加速骨愈合和确保支架与周围骨组织成功整合方面具有重要潜力。基于这些发现,我们得出结论,CS/GO@PAN纳米纤维膜作为骨再生的底物具有重要的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emerita Analoga Shell-Derived CS/GO Composite Incorporated into a Biomimetic PAN Nanofiber Membrane for Enhanced Bone Tissue Regeneration.

Bone regeneration is a process that aims to restore the structure and function of damaged bone tissues. Modern approaches for bone regeneration involve a combination of strategies, including tissue engineering and biomaterials, to promote healing. In this study, electrospun nanofibers were developed by using biosynthesized chitosan (CS)- and graphene oxide (GO)-loaded polyacrylonitrile (PAN) nanofibers. These scaffolds demonstrated stable mechanical support and capability to promote rapid bone defect repair. The physicochemical properties of the prepared nanoparticles and nanofibers were characterized using XRD and XPS analysis. The nanofiber morphology and structure of the CS/GO composite were analyzed through SEM and TEM. In vitro studies and ALP activity demonstrated the membranes capability to promote new bone formation and support healing, and Alizarin red staining highlighted the membrane's ability to enhance cell-cell interactions and increase calcium deposition, crucial for tissue regeneration. Cytotoxicity analysis revealed that 97.66 ± 1.5% of MG-63 cells remained viable on the surface of the prepared nanofiber, as assessed by the MTT assay. At the molecular level, real-time RT-PCR was used to examine the mRNA expression of Runx2 and type 1 collagen. Promoting osteogenic gene expression and enhancing mineral deposition on the prepared nanofiber show significant potential in accelerating bone healing and ensuring the successful integration of the scaffold with the surrounding bone tissue. Based on these findings, we conclude that the CS/GO@PAN nanofibrous membrane holds significant promise as a substrate for bone regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Reversible Assembly of Virus-Like Particles (VLPs) into Higher-Order Structures Controlled by Oxidation and Reduction of Linker Protein. Dual-Functional Porous UHMWPE Implant Eliminates Staphylococcus aureus Infection and Induces Osteogenesis in a Critical-Sized Segmental Femoral Defect Model in Mice. Instrument-Free Quantitative Detection of Analytes Using a Combo Lateral Flow Assay. 3D-Bioprinting of ROS-Responsive Curcumin-Loaded Hydrogel Scaffolds via Low-Temperature Extrusion for Enhancing Diabetic Wound Healing. Smartphone-Based Fe-ZIF Nanozyme-Driven Colorimetric Sensing Platform for In Situ Visual Detection of Glyphosate Residues on Fresh Tea Leaves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1