[低蛋白饲粮绵羊肾脏尿素潴留:肾盂尿素逆行灌注的研究]。

Journal de physiologie Pub Date : 1988-01-01
A Cirio, R Boivin, A Charlot
{"title":"[低蛋白饲粮绵羊肾脏尿素潴留:肾盂尿素逆行灌注的研究]。","authors":"A Cirio,&nbsp;R Boivin,&nbsp;A Charlot","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In order to study the role of the renal pelvis on urea sparing in sheep fed low protein diets, the pelvis was perfused through the ureter with 1M and 3M urea solutions. Eight ewes were used: four on a regular diet (total nitrogen 188.7 g.kg-1 dry matter) and the other four on a low protein diet (total nitrogen 109.4 g.kg-1 dry matter). On each animal, perfusions were performed on one kidney; the other one was kept as a control. Fractional excretion of urea (TEu) and urea (Cu), inulin, para-aminohippurate and osmolar clearances, were determined during five experimental periods of 30 min each (T = control, 1M = perfusion with 1M urea solution, R1 = first period of recovery, 3M = perfusion with 3M urea solution, R2 = second period of recovery). 1. During control periods sheep on low protein diet have a greater capacity of urea retention than sheep on regular diet, under antidiuretic conditions (inulin U/P = 200). The following data (means +/- S.D.) are all reduced in animals on low protein diet: TEu by 36% (0.38 +/- 0.19 vs. 0.59 +/- 0.28 for normal protein sheep, p less than 0.05), Cu by 55% (0.50 +/- 0.19 vs. 1.15 +/- 0.49 ml.min-1.kg-1 for normal sheep, p less than 0.01) and amount of urea excreted by 80% (2.1 +/- 0.7 vs. 10.4 +/- 2.7 mg.min-1 for normal sheep, p less than 0.01). 2. The linear regression analysis of the relationship between tubular reabsorption of urea and its filtered amount shows that the capacity of urea retention is significantly higher in low protein sheep and that the difference between the two groups is greater as the filtered amount increases. Following 1M and 3M perfusions, the capacity of urea reabsorption by the perfused kidneys is significantly decreased in low protein animals whereas there is no change in the normal ones. The result is that perfused kidneys of the low protein sheep increase the amount of urea excreted during these periods: urine concentration of urea (Uu) increases by 55% during R1 and by 144% during R2, TEu increases by 60% during R1 and by 147% during R2 and Cu increases by 40% during R1 and by 95% during R2, without any variation of urine flow rate. These changes could be understood, provided that an important transfer of the perfused urea to the renal medulla in the low protein sheep would reduce the concentration gradients which enhance urea passive reabsorption from the collecting ducts.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"83 2","pages":"64-73"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Kidney retention of urea in sheep on a hypoprotein diet: study by retrograde perfusion of urea in the kidney pelvis].\",\"authors\":\"A Cirio,&nbsp;R Boivin,&nbsp;A Charlot\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to study the role of the renal pelvis on urea sparing in sheep fed low protein diets, the pelvis was perfused through the ureter with 1M and 3M urea solutions. Eight ewes were used: four on a regular diet (total nitrogen 188.7 g.kg-1 dry matter) and the other four on a low protein diet (total nitrogen 109.4 g.kg-1 dry matter). On each animal, perfusions were performed on one kidney; the other one was kept as a control. Fractional excretion of urea (TEu) and urea (Cu), inulin, para-aminohippurate and osmolar clearances, were determined during five experimental periods of 30 min each (T = control, 1M = perfusion with 1M urea solution, R1 = first period of recovery, 3M = perfusion with 3M urea solution, R2 = second period of recovery). 1. During control periods sheep on low protein diet have a greater capacity of urea retention than sheep on regular diet, under antidiuretic conditions (inulin U/P = 200). The following data (means +/- S.D.) are all reduced in animals on low protein diet: TEu by 36% (0.38 +/- 0.19 vs. 0.59 +/- 0.28 for normal protein sheep, p less than 0.05), Cu by 55% (0.50 +/- 0.19 vs. 1.15 +/- 0.49 ml.min-1.kg-1 for normal sheep, p less than 0.01) and amount of urea excreted by 80% (2.1 +/- 0.7 vs. 10.4 +/- 2.7 mg.min-1 for normal sheep, p less than 0.01). 2. The linear regression analysis of the relationship between tubular reabsorption of urea and its filtered amount shows that the capacity of urea retention is significantly higher in low protein sheep and that the difference between the two groups is greater as the filtered amount increases. Following 1M and 3M perfusions, the capacity of urea reabsorption by the perfused kidneys is significantly decreased in low protein animals whereas there is no change in the normal ones. The result is that perfused kidneys of the low protein sheep increase the amount of urea excreted during these periods: urine concentration of urea (Uu) increases by 55% during R1 and by 144% during R2, TEu increases by 60% during R1 and by 147% during R2 and Cu increases by 40% during R1 and by 95% during R2, without any variation of urine flow rate. These changes could be understood, provided that an important transfer of the perfused urea to the renal medulla in the low protein sheep would reduce the concentration gradients which enhance urea passive reabsorption from the collecting ducts.(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":14735,\"journal\":{\"name\":\"Journal de physiologie\",\"volume\":\"83 2\",\"pages\":\"64-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de physiologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de physiologie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研究低蛋白饲粮绵羊肾盂对尿素节约的作用,通过输尿管向肾盂灌注1M和3M尿素溶液。试验选用8只母羊,其中4只饲喂常规饲粮(总氮188.7 g.kg-1干物质),另外4只饲喂低蛋白质饲粮(总氮109.4 g.kg-1干物质)。在每只动物的一个肾脏上进行灌注;另一只作为对照。在5个实验周期(T =对照,1M = 1M尿素溶液灌注,R1 =第一期恢复,3M = 3M尿素溶液灌注,R2 =第二期恢复)中测定尿素(TEu)和尿素(Cu)、菊粉、对氨基马粪酸和渗透压清除率的分数排泄。1. 在抗利尿条件下(菊粉U/P = 200),对照组低蛋白饲粮的绵羊尿素潴留能力高于常规饲粮的绵羊。低蛋白饲粮降低了以下数据(平均值+/- sd): TEu降低了36%(正常蛋白羊为0.38 +/- 0.19 vs. 0.59 +/- 0.28, p < 0.05), Cu降低了55% (0.50 +/- 0.19 vs. 1.15 +/- 0.49 ml.min-1。Kg-1, p < 0.01),尿素排泄量为80% (2.1 +/- 0.7 vs. 10.4 +/- 2.7 mg)。正常羊Min-1, p < 0.01)。2. 对尿素的管状重吸收与其过滤量的关系进行线性回归分析,发现低蛋白羊的尿素潴留能力显著高于低蛋白羊,且随着过滤量的增加,两组之间的差异更大。灌注1M和3M后,低蛋白动物肾脏尿素重吸收能力明显下降,而正常动物肾脏尿素重吸收能力无变化。结果表明,低蛋白羊肾灌注增加了这些时期的尿素排泄量:尿尿素浓度(Uu)在R1期间增加了55%,在R2期间增加了144%,TEu在R1期间增加了60%,在R2期间增加了147%,Cu在R1期间增加了40%,在R2期间增加了95%,而尿流率没有变化。这些变化是可以理解的,因为低蛋白羊的肾髓质输注尿素的重要转移会降低浓度梯度,从而增强尿素从收集管的被动重吸收。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Kidney retention of urea in sheep on a hypoprotein diet: study by retrograde perfusion of urea in the kidney pelvis].

In order to study the role of the renal pelvis on urea sparing in sheep fed low protein diets, the pelvis was perfused through the ureter with 1M and 3M urea solutions. Eight ewes were used: four on a regular diet (total nitrogen 188.7 g.kg-1 dry matter) and the other four on a low protein diet (total nitrogen 109.4 g.kg-1 dry matter). On each animal, perfusions were performed on one kidney; the other one was kept as a control. Fractional excretion of urea (TEu) and urea (Cu), inulin, para-aminohippurate and osmolar clearances, were determined during five experimental periods of 30 min each (T = control, 1M = perfusion with 1M urea solution, R1 = first period of recovery, 3M = perfusion with 3M urea solution, R2 = second period of recovery). 1. During control periods sheep on low protein diet have a greater capacity of urea retention than sheep on regular diet, under antidiuretic conditions (inulin U/P = 200). The following data (means +/- S.D.) are all reduced in animals on low protein diet: TEu by 36% (0.38 +/- 0.19 vs. 0.59 +/- 0.28 for normal protein sheep, p less than 0.05), Cu by 55% (0.50 +/- 0.19 vs. 1.15 +/- 0.49 ml.min-1.kg-1 for normal sheep, p less than 0.01) and amount of urea excreted by 80% (2.1 +/- 0.7 vs. 10.4 +/- 2.7 mg.min-1 for normal sheep, p less than 0.01). 2. The linear regression analysis of the relationship between tubular reabsorption of urea and its filtered amount shows that the capacity of urea retention is significantly higher in low protein sheep and that the difference between the two groups is greater as the filtered amount increases. Following 1M and 3M perfusions, the capacity of urea reabsorption by the perfused kidneys is significantly decreased in low protein animals whereas there is no change in the normal ones. The result is that perfused kidneys of the low protein sheep increase the amount of urea excreted during these periods: urine concentration of urea (Uu) increases by 55% during R1 and by 144% during R2, TEu increases by 60% during R1 and by 147% during R2 and Cu increases by 40% during R1 and by 95% during R2, without any variation of urine flow rate. These changes could be understood, provided that an important transfer of the perfused urea to the renal medulla in the low protein sheep would reduce the concentration gradients which enhance urea passive reabsorption from the collecting ducts.(ABSTRACT TRUNCATED AT 250 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Control of the maturation and the survival of central noradrenergic neurons in culture. Expression of T-type calcium current precedes neurite extension in neuroblastoma cells. Synaptic formations and modulations of synaptic transmissions between identified cerebellar neurons in culture. Regulation of neurotransmitter synthesis: from neuron to gene. In vitro and in vivo regulation of the expression of the tyrosine hydroxylase gene.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1