利用GOES-16数据和U-net卷积神经网络建模方法推进imerger的及时卫星降水

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2025-04-04 DOI:10.1016/j.envsoft.2025.106457
Mateo Vélez-Hernández , Paul Muñoz , Esteban Samaniego , María José Merizalde , Rolando Célleri
{"title":"利用GOES-16数据和U-net卷积神经网络建模方法推进imerger的及时卫星降水","authors":"Mateo Vélez-Hernández ,&nbsp;Paul Muñoz ,&nbsp;Esteban Samaniego ,&nbsp;María José Merizalde ,&nbsp;Rolando Célleri","doi":"10.1016/j.envsoft.2025.106457","DOIUrl":null,"url":null,"abstract":"<div><div>Timely precipitation information is essential for water resources management and hazard monitoring. In regions with limited ground-based measurements, satellite precipitation products (SPPs) provide a valuable alternative, though data latency often creates an information gap for real-time applications. This study addresses the latency gap of IMERG-ER using a U-Net-based Convolutional Neural Network (CNN) model, trained with near-instantaneous GOES-16 satellite data. The optimal combination of GOES-16 infrared bands (6.2, 6.9, 7.3, 8.4, and 11.2 μm) was determined to enhance IMERG-ER predictions. The CNN model's performance, evaluated with both quantitative and qualitative metrics, showed an RMSE of 0.46 mm/h, a Pearson's correlation coefficient of 0.60, and a Critical Success Index of 0.53. The model performed well in predicting low-intensity precipitation (&lt;3 mm/h), which occurs 97 % of the time, but faced challenges with high-intensity events due to data imbalance. These findings advance the use of SPPs and deep learning for operational hydrology.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"189 ","pages":"Article 106457"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing timely satellite precipitation for IMERG-ER using GOES-16 data and a U-net convolutional neural network modelling approach\",\"authors\":\"Mateo Vélez-Hernández ,&nbsp;Paul Muñoz ,&nbsp;Esteban Samaniego ,&nbsp;María José Merizalde ,&nbsp;Rolando Célleri\",\"doi\":\"10.1016/j.envsoft.2025.106457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Timely precipitation information is essential for water resources management and hazard monitoring. In regions with limited ground-based measurements, satellite precipitation products (SPPs) provide a valuable alternative, though data latency often creates an information gap for real-time applications. This study addresses the latency gap of IMERG-ER using a U-Net-based Convolutional Neural Network (CNN) model, trained with near-instantaneous GOES-16 satellite data. The optimal combination of GOES-16 infrared bands (6.2, 6.9, 7.3, 8.4, and 11.2 μm) was determined to enhance IMERG-ER predictions. The CNN model's performance, evaluated with both quantitative and qualitative metrics, showed an RMSE of 0.46 mm/h, a Pearson's correlation coefficient of 0.60, and a Critical Success Index of 0.53. The model performed well in predicting low-intensity precipitation (&lt;3 mm/h), which occurs 97 % of the time, but faced challenges with high-intensity events due to data imbalance. These findings advance the use of SPPs and deep learning for operational hydrology.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"189 \",\"pages\":\"Article 106457\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225001410\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001410","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

及时的降水信息对水资源管理和灾害监测至关重要。在地面测量有限的地区,卫星降水产品(SPPs)提供了一个有价值的替代方案,尽管数据延迟通常会造成实时应用的信息差距。本研究使用基于u - net的卷积神经网络(CNN)模型解决了imerger的延迟差距,该模型使用近瞬时GOES-16卫星数据进行训练。确定了GOES-16红外波段(6.2、6.9、7.3、8.4和11.2 μm)的最佳组合,以增强imerger预测。CNN模型的性能,通过定量和定性指标进行评估,显示RMSE为0.46 mm/h, Pearson相关系数为0.60,关键成功指数为0.53。该模型在预测低强度降水(< 3mm /h)方面表现良好,但由于数据不平衡,在预测高强度降水时面临挑战。这些发现促进了spp和深度学习在业务水文学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing timely satellite precipitation for IMERG-ER using GOES-16 data and a U-net convolutional neural network modelling approach
Timely precipitation information is essential for water resources management and hazard monitoring. In regions with limited ground-based measurements, satellite precipitation products (SPPs) provide a valuable alternative, though data latency often creates an information gap for real-time applications. This study addresses the latency gap of IMERG-ER using a U-Net-based Convolutional Neural Network (CNN) model, trained with near-instantaneous GOES-16 satellite data. The optimal combination of GOES-16 infrared bands (6.2, 6.9, 7.3, 8.4, and 11.2 μm) was determined to enhance IMERG-ER predictions. The CNN model's performance, evaluated with both quantitative and qualitative metrics, showed an RMSE of 0.46 mm/h, a Pearson's correlation coefficient of 0.60, and a Critical Success Index of 0.53. The model performed well in predicting low-intensity precipitation (<3 mm/h), which occurs 97 % of the time, but faced challenges with high-intensity events due to data imbalance. These findings advance the use of SPPs and deep learning for operational hydrology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Towards an improved language for river data analysis: Demonstration for the highly-regulated Ohio River basin Development of a web-based tool for rapid flood inundation modeling Compact Bioretention Cell for Urban Stormwater Management: Assessment of Hydrologic, Hydraulic, and Water Quality Performance via Laboratory and SWMM Modelling SPAR-TC: A Framework for Accounting Spatial Representativeness in Triple Collocation Model support tools for Informed Decision Making MIDAS and sensitivity analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1