哑铃形纳米孔碳酸钙脱除磷酸盐

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-04-03 DOI:10.1021/acsanm.5c00368
Changfu Xu, Yanwu Wang*, Jinyun He, Shuyi Mo and Fei Long, 
{"title":"哑铃形纳米孔碳酸钙脱除磷酸盐","authors":"Changfu Xu,&nbsp;Yanwu Wang*,&nbsp;Jinyun He,&nbsp;Shuyi Mo and Fei Long,&nbsp;","doi":"10.1021/acsanm.5c00368","DOIUrl":null,"url":null,"abstract":"<p >With the accelerated development of industrial and agricultural activities, phosphorus pollution has emerged as a global environmental issue. The adsorption method has been widely applied to treat phosphorus contamination. The development of a cost-effective adsorbent for phosphate removal is crucial for the adsorption process. In this study, dumbbell-shaped nanoporous CaCO<sub>3</sub> (DNPCC) featuring a mesoporous nanorod-assembled structure was synthesized via a simple precipitation-calcination method as the adsorbent for phosphorus-containing wastewater. Hierarchical calcium oxalate monohydrate (COM) was first prepared using ethylene glycol (EG) and sodium alginate (SA) as morphology-directing agents, then DNPCC was obtained through calcination of COM. The influence of EG and SA on DNPCC was systematically investigated. DNPCC exhibited remarkable phosphate removal performance in simulated phosphorus wastewater and landfill leachate, respectively, which was attributed to the synergistic effects of high Brunauer–Emmett–Teller (BET) surface area, mesoporous architecture, and positive surface charge. Kinetic studies revealed that the adsorption process was predominantly governed by chemical adsorption. It had a theoretical maximum adsorption capacity of 94.3 mg/g, surpassing that of most reported adsorbents. Thermodynamic analysis further demonstrated that the adsorption process was spontaneous, endothermic, and characterized by increased randomness. Additionally, DNPCC effectively overcomes the interference of various competing ions and maintains a high phosphate removal rate of 83.15%, even after five adsorption cycles. The electrostatic attraction and ligand exchange were the dominant adsorption mechanisms of phosphorus using DNPCC. This study highlighted DNPCC as a highly efficient and selective adsorbent for phosphate removal, offering promising potential for addressing water pollution challenges.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 14","pages":"7099–7111 7099–7111"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dumbbell-Shaped Nanoporous CaCO3 for Phosphate Removal\",\"authors\":\"Changfu Xu,&nbsp;Yanwu Wang*,&nbsp;Jinyun He,&nbsp;Shuyi Mo and Fei Long,&nbsp;\",\"doi\":\"10.1021/acsanm.5c00368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >With the accelerated development of industrial and agricultural activities, phosphorus pollution has emerged as a global environmental issue. The adsorption method has been widely applied to treat phosphorus contamination. The development of a cost-effective adsorbent for phosphate removal is crucial for the adsorption process. In this study, dumbbell-shaped nanoporous CaCO<sub>3</sub> (DNPCC) featuring a mesoporous nanorod-assembled structure was synthesized via a simple precipitation-calcination method as the adsorbent for phosphorus-containing wastewater. Hierarchical calcium oxalate monohydrate (COM) was first prepared using ethylene glycol (EG) and sodium alginate (SA) as morphology-directing agents, then DNPCC was obtained through calcination of COM. The influence of EG and SA on DNPCC was systematically investigated. DNPCC exhibited remarkable phosphate removal performance in simulated phosphorus wastewater and landfill leachate, respectively, which was attributed to the synergistic effects of high Brunauer–Emmett–Teller (BET) surface area, mesoporous architecture, and positive surface charge. Kinetic studies revealed that the adsorption process was predominantly governed by chemical adsorption. It had a theoretical maximum adsorption capacity of 94.3 mg/g, surpassing that of most reported adsorbents. Thermodynamic analysis further demonstrated that the adsorption process was spontaneous, endothermic, and characterized by increased randomness. Additionally, DNPCC effectively overcomes the interference of various competing ions and maintains a high phosphate removal rate of 83.15%, even after five adsorption cycles. The electrostatic attraction and ligand exchange were the dominant adsorption mechanisms of phosphorus using DNPCC. This study highlighted DNPCC as a highly efficient and selective adsorbent for phosphate removal, offering promising potential for addressing water pollution challenges.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 14\",\"pages\":\"7099–7111 7099–7111\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c00368\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00368","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着工农业活动的加速发展,磷污染已成为一个全球性的环境问题。吸附法已广泛应用于处理磷污染。开发一种经济高效的除磷吸附剂对吸附过程至关重要。本研究通过简单的沉淀-煅烧法合成了具有介孔纳米棒组装结构的哑铃形纳米多孔碳酸钙(DNPCC),作为含磷废水的吸附剂。首先以乙二醇(EG)和海藻酸钠(SA)为形态导向剂制备了层次化一水草酸钙(COM),然后将COM煅烧得到DNPCC。系统研究了EG和SA对DNPCC的影响。DNPCC在模拟含磷废水和垃圾渗滤液中表现出较好的除磷性能,这主要是由于高比表面积、介孔结构和表面正电荷的协同作用。动力学研究表明,吸附过程主要由化学吸附控制。它的理论最大吸附量为94.3 mg/g,超过了大多数报道的吸附剂。热力学分析进一步表明,吸附过程是自发的,吸热的,并且具有随机性增加的特点。此外,DNPCC有效克服了各种竞争离子的干扰,即使经过5次吸附循环,仍能保持83.15%的高磷酸盐去除率。静电吸引和配体交换是DNPCC吸附磷的主要机理。该研究强调了DNPCC作为一种高效、选择性的磷酸盐去除吸附剂,在解决水污染问题方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dumbbell-Shaped Nanoporous CaCO3 for Phosphate Removal

With the accelerated development of industrial and agricultural activities, phosphorus pollution has emerged as a global environmental issue. The adsorption method has been widely applied to treat phosphorus contamination. The development of a cost-effective adsorbent for phosphate removal is crucial for the adsorption process. In this study, dumbbell-shaped nanoporous CaCO3 (DNPCC) featuring a mesoporous nanorod-assembled structure was synthesized via a simple precipitation-calcination method as the adsorbent for phosphorus-containing wastewater. Hierarchical calcium oxalate monohydrate (COM) was first prepared using ethylene glycol (EG) and sodium alginate (SA) as morphology-directing agents, then DNPCC was obtained through calcination of COM. The influence of EG and SA on DNPCC was systematically investigated. DNPCC exhibited remarkable phosphate removal performance in simulated phosphorus wastewater and landfill leachate, respectively, which was attributed to the synergistic effects of high Brunauer–Emmett–Teller (BET) surface area, mesoporous architecture, and positive surface charge. Kinetic studies revealed that the adsorption process was predominantly governed by chemical adsorption. It had a theoretical maximum adsorption capacity of 94.3 mg/g, surpassing that of most reported adsorbents. Thermodynamic analysis further demonstrated that the adsorption process was spontaneous, endothermic, and characterized by increased randomness. Additionally, DNPCC effectively overcomes the interference of various competing ions and maintains a high phosphate removal rate of 83.15%, even after five adsorption cycles. The electrostatic attraction and ligand exchange were the dominant adsorption mechanisms of phosphorus using DNPCC. This study highlighted DNPCC as a highly efficient and selective adsorbent for phosphate removal, offering promising potential for addressing water pollution challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Publication Information Issue Editorial Masthead Resistive Switching and Synapse Properties of Bilayered CuO|MAPbI3 Nanometer-Thick Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1