Sascha Caron, José Enrique García Navarro, María Moreno Llácer, Polina Moskvitina, Mats Rovers, Adrián Rubio Jímenez, Roberto Ruiz de Austri, Zhongyi Zhang
{"title":"大型强子对撞机上的通用异常检测:转换最优分类器和 DDD 方法","authors":"Sascha Caron, José Enrique García Navarro, María Moreno Llácer, Polina Moskvitina, Mats Rovers, Adrián Rubio Jímenez, Roberto Ruiz de Austri, Zhongyi Zhang","doi":"10.1140/epjc/s10052-025-14087-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present a novel approach to transform supervised classifiers into effective unsupervised anomaly detectors. The method we have developed, termed Discriminatory Detection of Distortions (DDD), enhances anomaly detection by training a discriminator model on both original and artificially modified datasets. We conducted a comprehensive evaluation of our models on the Dark Machines Anomaly Score Challenge channels and a search for 4-top quark events, demonstrating the effectiveness of our approach across various final states and beyond the Standard Model scenarios. We compare the performance of the DDD method with the Deep Robust One-Class Classification method (DROCC), which incorporates signals in the training process, and the Deep Support Vector Data Description (DeepSVDD) method, a well-established and well-performing method for anomaly detection. Results show that the effectiveness of each model varies by signal and channel, with DDD proving to be a very effective anomaly detector. We recommend the combined use of DeepSVDD and DDD for purely unsupervised applications, with the addition of flow models for improved performance when resources allow. Findings suggest that network architectures that excel in supervised contexts, such as the particle transformer with standard model interactions, also perform well as unsupervised anomaly detectors. We also show that with these methods, it is likely possible to recognize 4-top quark production as an anomaly without prior knowledge of the process. We argue that the Large Hadron Collider community can transform supervised classifiers into anomaly detectors to uncover potential new physical phenomena in each search.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 4","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14087-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Universal anomaly detection at the LHC: transforming optimal classifiers and the DDD method\",\"authors\":\"Sascha Caron, José Enrique García Navarro, María Moreno Llácer, Polina Moskvitina, Mats Rovers, Adrián Rubio Jímenez, Roberto Ruiz de Austri, Zhongyi Zhang\",\"doi\":\"10.1140/epjc/s10052-025-14087-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we present a novel approach to transform supervised classifiers into effective unsupervised anomaly detectors. The method we have developed, termed Discriminatory Detection of Distortions (DDD), enhances anomaly detection by training a discriminator model on both original and artificially modified datasets. We conducted a comprehensive evaluation of our models on the Dark Machines Anomaly Score Challenge channels and a search for 4-top quark events, demonstrating the effectiveness of our approach across various final states and beyond the Standard Model scenarios. We compare the performance of the DDD method with the Deep Robust One-Class Classification method (DROCC), which incorporates signals in the training process, and the Deep Support Vector Data Description (DeepSVDD) method, a well-established and well-performing method for anomaly detection. Results show that the effectiveness of each model varies by signal and channel, with DDD proving to be a very effective anomaly detector. We recommend the combined use of DeepSVDD and DDD for purely unsupervised applications, with the addition of flow models for improved performance when resources allow. Findings suggest that network architectures that excel in supervised contexts, such as the particle transformer with standard model interactions, also perform well as unsupervised anomaly detectors. We also show that with these methods, it is likely possible to recognize 4-top quark production as an anomaly without prior knowledge of the process. We argue that the Large Hadron Collider community can transform supervised classifiers into anomaly detectors to uncover potential new physical phenomena in each search.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 4\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14087-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14087-z\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14087-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们提出了一种将有监督分类器转换为有效的无监督异常检测器的新方法。我们开发的方法,称为扭曲的歧视性检测(DDD),通过在原始和人工修改的数据集上训练鉴别器模型来增强异常检测。我们在Dark Machines异常得分挑战频道上对我们的模型进行了全面评估,并搜索了4顶夸克事件,证明了我们的方法在各种最终状态和超出标准模型场景的有效性。我们将DDD方法与深度鲁棒单类分类方法(Deep Robust One-Class Classification method, DROCC)和深度支持向量数据描述方法(Deep Support Vector Data Description, DeepSVDD)的性能进行了比较,前者在训练过程中包含了信号,后者是一种成熟且性能良好的异常检测方法。结果表明,每个模型的有效性因信号和信道的不同而不同,DDD被证明是一种非常有效的异常检测器。我们建议在纯无监督应用中结合使用DeepSVDD和DDD,并在资源允许的情况下添加流模型以提高性能。研究结果表明,在有监督的环境中表现出色的网络架构,如具有标准模型相互作用的粒子变压器,在无监督的异常检测器中也表现良好。我们还表明,使用这些方法,很可能在没有事先了解过程的情况下将4顶夸克的产生识别为异常。我们认为,大型强子对撞机社区可以将监督分类器转换为异常检测器,以在每次搜索中发现潜在的新物理现象。
Universal anomaly detection at the LHC: transforming optimal classifiers and the DDD method
In this work, we present a novel approach to transform supervised classifiers into effective unsupervised anomaly detectors. The method we have developed, termed Discriminatory Detection of Distortions (DDD), enhances anomaly detection by training a discriminator model on both original and artificially modified datasets. We conducted a comprehensive evaluation of our models on the Dark Machines Anomaly Score Challenge channels and a search for 4-top quark events, demonstrating the effectiveness of our approach across various final states and beyond the Standard Model scenarios. We compare the performance of the DDD method with the Deep Robust One-Class Classification method (DROCC), which incorporates signals in the training process, and the Deep Support Vector Data Description (DeepSVDD) method, a well-established and well-performing method for anomaly detection. Results show that the effectiveness of each model varies by signal and channel, with DDD proving to be a very effective anomaly detector. We recommend the combined use of DeepSVDD and DDD for purely unsupervised applications, with the addition of flow models for improved performance when resources allow. Findings suggest that network architectures that excel in supervised contexts, such as the particle transformer with standard model interactions, also perform well as unsupervised anomaly detectors. We also show that with these methods, it is likely possible to recognize 4-top quark production as an anomaly without prior knowledge of the process. We argue that the Large Hadron Collider community can transform supervised classifiers into anomaly detectors to uncover potential new physical phenomena in each search.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.