不同夸克模型描述的暗物质对奇异夸克星的影响

IF 4.8 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS The European Physical Journal C Pub Date : 2025-04-17 DOI:10.1140/epjc/s10052-025-14150-9
Yida Yang, Chen Wu, Ji-Feng Yang
{"title":"不同夸克模型描述的暗物质对奇异夸克星的影响","authors":"Yida Yang,&nbsp;Chen Wu,&nbsp;Ji-Feng Yang","doi":"10.1140/epjc/s10052-025-14150-9","DOIUrl":null,"url":null,"abstract":"<div><p>Dark matter is hypothesized to interact with ordinary matter solely through gravity and may be present in compact objects such as strange quark stars. We treat strange quark stars admixed with dark matter as two-fluid systems to investigate the potential effects of dark matter on strange quark stars. Quark matter is described by the quasiparticle model and the extended MIT bag model for comparison. Dark matter is treated as asymmetric, self-interacting, and composed of massive fermionic particles. The two-fluid Tolman–Oppenheimer–Volkoff (TOV) equations are employed to solve for specific stellar properties. Our analysis yields relations between central energy density and mass, radius and mass, as well as tidal deformability and mass. The calculated curves generally align with observational data. In particular, we find that the pattern in which fermionic asymmetric dark matter affects the properties of strange quark stars may not be influenced by the equation of state (EOS) of strange quark matter.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 4","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14150-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of dark matter on strange quark stars described by different quark models\",\"authors\":\"Yida Yang,&nbsp;Chen Wu,&nbsp;Ji-Feng Yang\",\"doi\":\"10.1140/epjc/s10052-025-14150-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dark matter is hypothesized to interact with ordinary matter solely through gravity and may be present in compact objects such as strange quark stars. We treat strange quark stars admixed with dark matter as two-fluid systems to investigate the potential effects of dark matter on strange quark stars. Quark matter is described by the quasiparticle model and the extended MIT bag model for comparison. Dark matter is treated as asymmetric, self-interacting, and composed of massive fermionic particles. The two-fluid Tolman–Oppenheimer–Volkoff (TOV) equations are employed to solve for specific stellar properties. Our analysis yields relations between central energy density and mass, radius and mass, as well as tidal deformability and mass. The calculated curves generally align with observational data. In particular, we find that the pattern in which fermionic asymmetric dark matter affects the properties of strange quark stars may not be influenced by the equation of state (EOS) of strange quark matter.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 4\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14150-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14150-9\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14150-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

据推测,暗物质仅通过引力与普通物质相互作用,并且可能存在于诸如奇异夸克星之类的致密物体中。我们将奇异夸克星与暗物质混合作为双流体系统来研究暗物质对奇异夸克星的潜在影响。夸克物质用准粒子模型和扩展的MIT包模型来描述,以作比较。暗物质被认为是不对称的、自相互作用的、由大质量费米子粒子组成的。采用双流体Tolman-Oppenheimer-Volkoff (TOV)方程求解特定的恒星性质。我们的分析得出了中心能量密度与质量、半径与质量以及潮汐变形能力与质量之间的关系。计算曲线与观测资料基本一致。特别地,我们发现费米子不对称暗物质影响奇异夸克星性质的模式可能不受奇异夸克物质状态方程(EOS)的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of dark matter on strange quark stars described by different quark models

Dark matter is hypothesized to interact with ordinary matter solely through gravity and may be present in compact objects such as strange quark stars. We treat strange quark stars admixed with dark matter as two-fluid systems to investigate the potential effects of dark matter on strange quark stars. Quark matter is described by the quasiparticle model and the extended MIT bag model for comparison. Dark matter is treated as asymmetric, self-interacting, and composed of massive fermionic particles. The two-fluid Tolman–Oppenheimer–Volkoff (TOV) equations are employed to solve for specific stellar properties. Our analysis yields relations between central energy density and mass, radius and mass, as well as tidal deformability and mass. The calculated curves generally align with observational data. In particular, we find that the pattern in which fermionic asymmetric dark matter affects the properties of strange quark stars may not be influenced by the equation of state (EOS) of strange quark matter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
期刊最新文献
A satellite \(N=2\) superparticle in extra dimensions Exclusive vector toponium photoproduction in hadronic collisions First use of large area SiPM matrices coupled with NaI(Tl) scintillating crystal for low energy dark matter search Searching for long-lived axion-like particles via displaced vertices at the HL-LHC Estimation of backgrounds from jets misidentified as \(\tau \)-leptons using the Universal Fake Factor method with the ATLAS detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1