Tarik Ouahrani, A. Esquembre Kučukalić, R. M. Boufatah, Daniel Errandonea
{"title":"用从头算Bethe-Salpeter方程法研究单层Cu2WSe4的光学性质","authors":"Tarik Ouahrani, A. Esquembre Kučukalić, R. M. Boufatah, Daniel Errandonea","doi":"10.1021/acs.jpcc.5c00855","DOIUrl":null,"url":null,"abstract":"The binding energy of excitons is essential in assessing the suitability of materials for photovoltaic applications. This research employs first-principles calculations based on the <i>GW</i> approximation and the Bethe–Salpeter equation to explore the excitonic characteristics of a Cu<sub>2</sub>WSe<sub>4</sub> monolayer. Our findings support the structural stability of this two-dimensional material and demonstrate a pronounced excitonic response. The computed binding energies for both bright and dark excitons are considerably larger than those that are generally necessary for standard photovoltaic applications. However, examination of exciton amplitude reveals a highly delocalized configuration of electron–hole pairs throughout the crystal, which may alleviate some issues related to elevated binding energies. These results highlight the excitonic properties of Cu<sub>2</sub>WSe<sub>4</sub> and offer valuable insights into its potential for optoelectronic applications.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"62 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Properties of Single Layer Cu2WSe4 from the Ab Initio Bethe–Salpeter Equation Method\",\"authors\":\"Tarik Ouahrani, A. Esquembre Kučukalić, R. M. Boufatah, Daniel Errandonea\",\"doi\":\"10.1021/acs.jpcc.5c00855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The binding energy of excitons is essential in assessing the suitability of materials for photovoltaic applications. This research employs first-principles calculations based on the <i>GW</i> approximation and the Bethe–Salpeter equation to explore the excitonic characteristics of a Cu<sub>2</sub>WSe<sub>4</sub> monolayer. Our findings support the structural stability of this two-dimensional material and demonstrate a pronounced excitonic response. The computed binding energies for both bright and dark excitons are considerably larger than those that are generally necessary for standard photovoltaic applications. However, examination of exciton amplitude reveals a highly delocalized configuration of electron–hole pairs throughout the crystal, which may alleviate some issues related to elevated binding energies. These results highlight the excitonic properties of Cu<sub>2</sub>WSe<sub>4</sub> and offer valuable insights into its potential for optoelectronic applications.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.5c00855\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c00855","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Optical Properties of Single Layer Cu2WSe4 from the Ab Initio Bethe–Salpeter Equation Method
The binding energy of excitons is essential in assessing the suitability of materials for photovoltaic applications. This research employs first-principles calculations based on the GW approximation and the Bethe–Salpeter equation to explore the excitonic characteristics of a Cu2WSe4 monolayer. Our findings support the structural stability of this two-dimensional material and demonstrate a pronounced excitonic response. The computed binding energies for both bright and dark excitons are considerably larger than those that are generally necessary for standard photovoltaic applications. However, examination of exciton amplitude reveals a highly delocalized configuration of electron–hole pairs throughout the crystal, which may alleviate some issues related to elevated binding energies. These results highlight the excitonic properties of Cu2WSe4 and offer valuable insights into its potential for optoelectronic applications.
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.