澳大利亚长期致敏的神经元机制。

Journal de physiologie Pub Date : 1988-01-01
J H Byrne, A Eskin, K P Scholz
{"title":"澳大利亚长期致敏的神经元机制。","authors":"J H Byrne,&nbsp;A Eskin,&nbsp;K P Scholz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>1.) Cellular processes that contribute to the acquisition and expression of long-term sensitization have been examined in Aplysia. The tail-siphon withdrawal reflex was studied because the neural circuit for this reflex has been well characterized. Furthermore, the sensory neurons of this neural circuit exhibit cellular changes that accompany short-term sensitization. 2.) Repeated application of noxious stimuli to the animal produces a long-lasting enhancement of reflex withdrawal of the siphon when the animal is tested with a weak stimulus to the tail. These findings confirm the existence of long-term sensitization in Aplysia, first described by Pinkser et al. (1973). 3.) Biophysical correlates of long-term sensitization were examined in the first central relay of the tail-siphon reflex circuit, the sensory neurons that innervate the animal's tail. The net outward membrane currents of these cells reduced after 24 hours as a consequence of long-term sensitization training. 4.) The intracellular signal for the induction of these changes in membrane currents was examined by intracellular injection of cAMP into individual sensory neurons. This procedure mimics at least some of the effects of sensitization training at the single-cell level. cAMP induced a long-term reduction of membrane K+ currents 24 hours after the cells were injected with cAMP. The membrane currents reduced by cAMP were similar to those reduced by long-term sensitization training. 5.) Preliminary experiments indicate that neurotransmitters and agents that induce an evaluation of cAMP in the sensory neurons also alter the incorporation of labeled amino acids into specific proteins in the sensory neurons.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"83 3","pages":"141-7"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuronal mechanisms contributing to long-term sensitization in Aplysia.\",\"authors\":\"J H Byrne,&nbsp;A Eskin,&nbsp;K P Scholz\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1.) Cellular processes that contribute to the acquisition and expression of long-term sensitization have been examined in Aplysia. The tail-siphon withdrawal reflex was studied because the neural circuit for this reflex has been well characterized. Furthermore, the sensory neurons of this neural circuit exhibit cellular changes that accompany short-term sensitization. 2.) Repeated application of noxious stimuli to the animal produces a long-lasting enhancement of reflex withdrawal of the siphon when the animal is tested with a weak stimulus to the tail. These findings confirm the existence of long-term sensitization in Aplysia, first described by Pinkser et al. (1973). 3.) Biophysical correlates of long-term sensitization were examined in the first central relay of the tail-siphon reflex circuit, the sensory neurons that innervate the animal's tail. The net outward membrane currents of these cells reduced after 24 hours as a consequence of long-term sensitization training. 4.) The intracellular signal for the induction of these changes in membrane currents was examined by intracellular injection of cAMP into individual sensory neurons. This procedure mimics at least some of the effects of sensitization training at the single-cell level. cAMP induced a long-term reduction of membrane K+ currents 24 hours after the cells were injected with cAMP. The membrane currents reduced by cAMP were similar to those reduced by long-term sensitization training. 5.) Preliminary experiments indicate that neurotransmitters and agents that induce an evaluation of cAMP in the sensory neurons also alter the incorporation of labeled amino acids into specific proteins in the sensory neurons.(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":14735,\"journal\":{\"name\":\"Journal de physiologie\",\"volume\":\"83 3\",\"pages\":\"141-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de physiologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de physiologie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1)。促进长期致敏的获得和表达的细胞过程已经在澳大利亚进行了研究。研究尾虹吸撤退反射是因为这种反射的神经回路已经被很好地描述了。此外,该神经回路的感觉神经元表现出伴随短期敏化的细胞变化。2)。当对动物的尾巴进行微弱刺激时,对动物反复施加有害刺激会使虹吸管的反射性退缩产生持久的增强。这些发现证实了Pinkser等人(1973)首次描述的长期致敏在澳大利亚的存在。3)。在尾虹吸反射回路(支配动物尾巴的感觉神经元)的第一个中央中继中,研究了长期致敏的生物物理相关性。由于长期敏化训练,这些细胞的净外膜电流在24小时后减少。4)。通过向单个感觉神经元细胞内注射cAMP来检测诱导这些膜电流变化的胞内信号。这个过程至少在单细胞水平上模拟了致敏训练的一些效果。在细胞注射cAMP 24小时后,cAMP诱导了细胞膜K+电流的长期降低。cAMP减少的膜电流与长期敏化训练减少的膜电流相似。5)。初步实验表明,在感觉神经元中诱导cAMP评价的神经递质和药物也会改变标记氨基酸与感觉神经元中特定蛋白质的结合。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuronal mechanisms contributing to long-term sensitization in Aplysia.

1.) Cellular processes that contribute to the acquisition and expression of long-term sensitization have been examined in Aplysia. The tail-siphon withdrawal reflex was studied because the neural circuit for this reflex has been well characterized. Furthermore, the sensory neurons of this neural circuit exhibit cellular changes that accompany short-term sensitization. 2.) Repeated application of noxious stimuli to the animal produces a long-lasting enhancement of reflex withdrawal of the siphon when the animal is tested with a weak stimulus to the tail. These findings confirm the existence of long-term sensitization in Aplysia, first described by Pinkser et al. (1973). 3.) Biophysical correlates of long-term sensitization were examined in the first central relay of the tail-siphon reflex circuit, the sensory neurons that innervate the animal's tail. The net outward membrane currents of these cells reduced after 24 hours as a consequence of long-term sensitization training. 4.) The intracellular signal for the induction of these changes in membrane currents was examined by intracellular injection of cAMP into individual sensory neurons. This procedure mimics at least some of the effects of sensitization training at the single-cell level. cAMP induced a long-term reduction of membrane K+ currents 24 hours after the cells were injected with cAMP. The membrane currents reduced by cAMP were similar to those reduced by long-term sensitization training. 5.) Preliminary experiments indicate that neurotransmitters and agents that induce an evaluation of cAMP in the sensory neurons also alter the incorporation of labeled amino acids into specific proteins in the sensory neurons.(ABSTRACT TRUNCATED AT 250 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Control of the maturation and the survival of central noradrenergic neurons in culture. Expression of T-type calcium current precedes neurite extension in neuroblastoma cells. Synaptic formations and modulations of synaptic transmissions between identified cerebellar neurons in culture. Regulation of neurotransmitter synthesis: from neuron to gene. In vitro and in vivo regulation of the expression of the tyrosine hydroxylase gene.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1