{"title":"室管素在长期突触变化发展中的作用。","authors":"V E Shashoua","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>1.) Three types of training experiments (a complex motor task, avoidance conditioning and classical conditioning) in the goldfish and one in the mouse (T-maze learning) indicate that the brain extracellular glycoprotein (ependymin) has a role in the consolidation process of long-term memory formation. 2.) Direct ELISA measures of the concentration of ependymin in the brain extracellular fluid (ECF) indicate that its level decreases after goldfish learn to associate a light stimulus (cs) with the subsequent arrival of a shock (US): paired CS-US gave changes whereas an unpaired presentation of CS-US gave no changes in comparison to unstimulated controls. 3.) Ependymin is released into ECF and CSF as mixtures of three types of disulfide-linked dimers of two acidic polypeptide chains (M. W. 37 kDa and 31 kDa). It contains 10% carbohydrate as an N-linked glycan. 4.) Ependymin has the capacity to polymerize in response to events that deplete Ca2+ from the brain extracellular environment. A molecular hypothesis relating polymerization properties to the process of formation of long-lasting synaptic changes is proposed. 5.) Investigations of the pattern of regeneration of goldfish optic nerve and the mechanisms of long-term potentiation (LTP) of rat brain hippocampal slices suggest that ependymin has a role in the formation of long-lasting synaptic changes. The E.M. data show that polymerized products which stain with anti-ependymin sera accumulate at synapses and in new spines after LTP.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"83 3","pages":"232-9"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of ependymin in the development of long lasting synaptic changes.\",\"authors\":\"V E Shashoua\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1.) Three types of training experiments (a complex motor task, avoidance conditioning and classical conditioning) in the goldfish and one in the mouse (T-maze learning) indicate that the brain extracellular glycoprotein (ependymin) has a role in the consolidation process of long-term memory formation. 2.) Direct ELISA measures of the concentration of ependymin in the brain extracellular fluid (ECF) indicate that its level decreases after goldfish learn to associate a light stimulus (cs) with the subsequent arrival of a shock (US): paired CS-US gave changes whereas an unpaired presentation of CS-US gave no changes in comparison to unstimulated controls. 3.) Ependymin is released into ECF and CSF as mixtures of three types of disulfide-linked dimers of two acidic polypeptide chains (M. W. 37 kDa and 31 kDa). It contains 10% carbohydrate as an N-linked glycan. 4.) Ependymin has the capacity to polymerize in response to events that deplete Ca2+ from the brain extracellular environment. A molecular hypothesis relating polymerization properties to the process of formation of long-lasting synaptic changes is proposed. 5.) Investigations of the pattern of regeneration of goldfish optic nerve and the mechanisms of long-term potentiation (LTP) of rat brain hippocampal slices suggest that ependymin has a role in the formation of long-lasting synaptic changes. The E.M. data show that polymerized products which stain with anti-ependymin sera accumulate at synapses and in new spines after LTP.</p>\",\"PeriodicalId\":14735,\"journal\":{\"name\":\"Journal de physiologie\",\"volume\":\"83 3\",\"pages\":\"232-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de physiologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de physiologie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
1)。三种类型的训练实验(复杂运动任务、回避条件反射和经典条件反射)在金鱼和一种类型的小鼠(t迷宫学习)中表明,脑细胞外糖蛋白(室管ymin)在长期记忆形成的巩固过程中发挥作用。2)。直接ELISA法测量脑细胞外液(ECF)中室管素的浓度表明,在金鱼学会将光刺激(cs)与随后到来的电击(US)联系起来后,其水平下降:配对的cs -US产生变化,而未配对的cs -US与未刺激的对照组相比没有变化。3)。Ependymin作为两种酸性多肽链(M. W. 37 kDa和31 kDa)的三种二硫连接二聚体的混合物释放到ECF和CSF中。它含有10%的碳水化合物作为n链聚糖。4)。Ependymin具有聚合能力,以响应从大脑细胞外环境中消耗Ca2+的事件。提出了一种分子假说,将聚合特性与形成持久突触变化的过程联系起来。5)。对金鱼视神经再生模式和大鼠脑海马切片长时程增强(LTP)机制的研究表明,室管素参与了长时程突触变化的形成。emm数据显示抗室管素血清染色的聚合产物在LTP后突触和新棘中积累。
The role of ependymin in the development of long lasting synaptic changes.
1.) Three types of training experiments (a complex motor task, avoidance conditioning and classical conditioning) in the goldfish and one in the mouse (T-maze learning) indicate that the brain extracellular glycoprotein (ependymin) has a role in the consolidation process of long-term memory formation. 2.) Direct ELISA measures of the concentration of ependymin in the brain extracellular fluid (ECF) indicate that its level decreases after goldfish learn to associate a light stimulus (cs) with the subsequent arrival of a shock (US): paired CS-US gave changes whereas an unpaired presentation of CS-US gave no changes in comparison to unstimulated controls. 3.) Ependymin is released into ECF and CSF as mixtures of three types of disulfide-linked dimers of two acidic polypeptide chains (M. W. 37 kDa and 31 kDa). It contains 10% carbohydrate as an N-linked glycan. 4.) Ependymin has the capacity to polymerize in response to events that deplete Ca2+ from the brain extracellular environment. A molecular hypothesis relating polymerization properties to the process of formation of long-lasting synaptic changes is proposed. 5.) Investigations of the pattern of regeneration of goldfish optic nerve and the mechanisms of long-term potentiation (LTP) of rat brain hippocampal slices suggest that ependymin has a role in the formation of long-lasting synaptic changes. The E.M. data show that polymerized products which stain with anti-ependymin sera accumulate at synapses and in new spines after LTP.