David L. Mitchell , Ronald M. Humphrey , Gerald M. Adair , Larry H. Thompson , Judith M. Clarkson
{"title":"(6-4)光产物的修复与紫外线照射下正常和超敏感啮齿动物细胞的分剂量恢复相关","authors":"David L. Mitchell , Ronald M. Humphrey , Gerald M. Adair , Larry H. Thompson , Judith M. Clarkson","doi":"10.1016/0167-8817(88)90007-7","DOIUrl":null,"url":null,"abstract":"<div><p>Chinese hamster ovary cells and two UV-hypersensitive derivatives were used to determine the importance of DNA excision repair for split-dose recovery. In the wild-type cells 75% of the maximum theoretical recovery was observed when the fractions were delivered at 2-h intervals. Very little recovery was evident in the two hypersensitive cell lines. Using radioimmunoassays specific for (6-4)photoproducts and cyclobutane dimers, the ability of UV-irradiated repair-deficient cells representing 5 complementation groups to repair these 2 photoproducts was determined. Removal of antibody-binding sites specific for (6-4)photoproducts was 80% complete in 6 h and was defectiev in the UV-sensitive cells. In contrast, only 20-–60% of antibody-binding sites specific for cylcobutane dimers were removed 18 h post-irradiation, and the extent of removal was the same in normal and defective cell lines. We conclude that repair pf (6-4)photoproducts accounts for split-dose recovery. In addition, we conclude thtat a consequences of DNA repair in CHO cells is modification rather that reemoval of cylobutane dimers.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90007-7","citationCount":"44","resultStr":"{\"title\":\"Repair of (6-4)photoproducts correlates with split-dose recovery in UV-irradiated normal and hypersensitive rodent cells\",\"authors\":\"David L. Mitchell , Ronald M. Humphrey , Gerald M. Adair , Larry H. Thompson , Judith M. Clarkson\",\"doi\":\"10.1016/0167-8817(88)90007-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chinese hamster ovary cells and two UV-hypersensitive derivatives were used to determine the importance of DNA excision repair for split-dose recovery. In the wild-type cells 75% of the maximum theoretical recovery was observed when the fractions were delivered at 2-h intervals. Very little recovery was evident in the two hypersensitive cell lines. Using radioimmunoassays specific for (6-4)photoproducts and cyclobutane dimers, the ability of UV-irradiated repair-deficient cells representing 5 complementation groups to repair these 2 photoproducts was determined. Removal of antibody-binding sites specific for (6-4)photoproducts was 80% complete in 6 h and was defectiev in the UV-sensitive cells. In contrast, only 20-–60% of antibody-binding sites specific for cylcobutane dimers were removed 18 h post-irradiation, and the extent of removal was the same in normal and defective cell lines. We conclude that repair pf (6-4)photoproducts accounts for split-dose recovery. In addition, we conclude thtat a consequences of DNA repair in CHO cells is modification rather that reemoval of cylobutane dimers.</p></div>\",\"PeriodicalId\":100936,\"journal\":{\"name\":\"Mutation Research/DNA Repair Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0167-8817(88)90007-7\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNA Repair Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0167881788900077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0167881788900077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Repair of (6-4)photoproducts correlates with split-dose recovery in UV-irradiated normal and hypersensitive rodent cells
Chinese hamster ovary cells and two UV-hypersensitive derivatives were used to determine the importance of DNA excision repair for split-dose recovery. In the wild-type cells 75% of the maximum theoretical recovery was observed when the fractions were delivered at 2-h intervals. Very little recovery was evident in the two hypersensitive cell lines. Using radioimmunoassays specific for (6-4)photoproducts and cyclobutane dimers, the ability of UV-irradiated repair-deficient cells representing 5 complementation groups to repair these 2 photoproducts was determined. Removal of antibody-binding sites specific for (6-4)photoproducts was 80% complete in 6 h and was defectiev in the UV-sensitive cells. In contrast, only 20-–60% of antibody-binding sites specific for cylcobutane dimers were removed 18 h post-irradiation, and the extent of removal was the same in normal and defective cell lines. We conclude that repair pf (6-4)photoproducts accounts for split-dose recovery. In addition, we conclude thtat a consequences of DNA repair in CHO cells is modification rather that reemoval of cylobutane dimers.