中国仓鼠xrs5突变细胞系DNA单链和双链断裂的DNA解绕修复

Nina D. Costa, Peter E. Bryant
{"title":"中国仓鼠xrs5突变细胞系DNA单链和双链断裂的DNA解绕修复","authors":"Nina D. Costa,&nbsp;Peter E. Bryant","doi":"10.1016/0167-8817(88)90011-9","DOIUrl":null,"url":null,"abstract":"<div><p>The DNA unwinding technique has been used to measure the induction and repair of DNA strand breaks by X-rays in the X-ray sensitive (xrs 5) mutant and its parent CHO K1 line of Chinese hamster cells. Results show that frequency of induction of DNA strand breaks was the same for both cell lines. The repair of single-strand breaks was found to be slightly slower in xrs 5 over the first 20 min after X-ray exposure, but the level of repair of ssb reached after an incubation of 1h following X-ray exposure in xrs 5 was the same as in CHO K1. Our results also show that the rate of repair of DNA double-strand breaks in xrs 5 cells was clearly slower than that in CHO K1, supporting the conclusion of Kemp et al. (1984) who used the neutral elution technique, that xrs 5 is defective in the repair pathway of DNA double-strand breaks.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90011-9","citationCount":"32","resultStr":"{\"title\":\"Repair of DNA single-strand and double-strand breaks in the Chinese hamster xrs 5 mutant cell line as determined by DNA unwinding\",\"authors\":\"Nina D. Costa,&nbsp;Peter E. Bryant\",\"doi\":\"10.1016/0167-8817(88)90011-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The DNA unwinding technique has been used to measure the induction and repair of DNA strand breaks by X-rays in the X-ray sensitive (xrs 5) mutant and its parent CHO K1 line of Chinese hamster cells. Results show that frequency of induction of DNA strand breaks was the same for both cell lines. The repair of single-strand breaks was found to be slightly slower in xrs 5 over the first 20 min after X-ray exposure, but the level of repair of ssb reached after an incubation of 1h following X-ray exposure in xrs 5 was the same as in CHO K1. Our results also show that the rate of repair of DNA double-strand breaks in xrs 5 cells was clearly slower than that in CHO K1, supporting the conclusion of Kemp et al. (1984) who used the neutral elution technique, that xrs 5 is defective in the repair pathway of DNA double-strand breaks.</p></div>\",\"PeriodicalId\":100936,\"journal\":{\"name\":\"Mutation Research/DNA Repair Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0167-8817(88)90011-9\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNA Repair Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0167881788900119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0167881788900119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

利用DNA解绕技术测定了中国仓鼠x射线敏感突变体(xrs5)及其亲本CHO K1细胞系在x射线诱导和修复DNA链断裂的过程。结果表明,两种细胞系DNA链断裂的诱导频率相同。单链断裂的修复在x射线暴露后的头20分钟内被发现在xrs 5中稍慢,但在x射线暴露后的孵育1h后,xrs 5中ssb的修复水平与CHO K1相同。我们的研究结果还表明,xrs 5细胞的DNA双链断裂修复速率明显慢于CHO K1,这支持了Kemp等人(1984)使用中性洗脱技术的结论,即xrs 5在DNA双链断裂修复途径中存在缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Repair of DNA single-strand and double-strand breaks in the Chinese hamster xrs 5 mutant cell line as determined by DNA unwinding

The DNA unwinding technique has been used to measure the induction and repair of DNA strand breaks by X-rays in the X-ray sensitive (xrs 5) mutant and its parent CHO K1 line of Chinese hamster cells. Results show that frequency of induction of DNA strand breaks was the same for both cell lines. The repair of single-strand breaks was found to be slightly slower in xrs 5 over the first 20 min after X-ray exposure, but the level of repair of ssb reached after an incubation of 1h following X-ray exposure in xrs 5 was the same as in CHO K1. Our results also show that the rate of repair of DNA double-strand breaks in xrs 5 cells was clearly slower than that in CHO K1, supporting the conclusion of Kemp et al. (1984) who used the neutral elution technique, that xrs 5 is defective in the repair pathway of DNA double-strand breaks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of an X-ray-hypersensitive mutant of V79 Chinese hamster cells Establishment of a monoclonal antibody recognizing ultraviolet light-induced (6-4) photoproducts Repair of the plasmid pBR322 damaged by γ-irradiation or by restriction endonucleases using different recombination-proficient E. coli strains Radiosensitive Down syndrome lymphoblastoid lines have normal ionizing-radiation-induced inhibition of DNA synthesis An analysis of the mutagenicity of 1,2-dibromoethane to Escherichia coli: Influence of DNA repair activities and metabolic pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1