S R Mordon, A H Cornil, B Buys, J P Sozanski, J M Brunetaud, Y Moschetto
{"title":"医用可控Nd:YAG激光器的研制。","authors":"S R Mordon, A H Cornil, B Buys, J P Sozanski, J M Brunetaud, Y Moschetto","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Several medical fields are concerned with applications of thermal lasers such as neodymium-doped, yttrium aluminum garnet (Nd:YAG), argon, and CO2. However, quantification of the necrotic volume of Nd:YAG laser-induced damage is not possible at the time of treatment. Mathematic models and feedback control can help to optimize Nd:YAG laser treatments. We therefore formulated mathematic models for coagulation processes and developed an intelligent Nd:YAG laser system with closed-loop feedback control. Surface temperature evolution proved to be valuable data for real-time control of coagulation and ablation. Infrared thermometry provided the noncontact measurement of temperature. A computer stored the temperature data calculated by the mathematic model. Deviations of surface temperature during the treatment beyond established tolerances causes the Nd:YAG laser system to adjust the laser power automatically.</p>","PeriodicalId":76133,"journal":{"name":"Medical instrumentation","volume":"21 4","pages":"222-5"},"PeriodicalIF":0.0000,"publicationDate":"1987-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of controlled Nd:YAG laser for medical applications.\",\"authors\":\"S R Mordon, A H Cornil, B Buys, J P Sozanski, J M Brunetaud, Y Moschetto\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several medical fields are concerned with applications of thermal lasers such as neodymium-doped, yttrium aluminum garnet (Nd:YAG), argon, and CO2. However, quantification of the necrotic volume of Nd:YAG laser-induced damage is not possible at the time of treatment. Mathematic models and feedback control can help to optimize Nd:YAG laser treatments. We therefore formulated mathematic models for coagulation processes and developed an intelligent Nd:YAG laser system with closed-loop feedback control. Surface temperature evolution proved to be valuable data for real-time control of coagulation and ablation. Infrared thermometry provided the noncontact measurement of temperature. A computer stored the temperature data calculated by the mathematic model. Deviations of surface temperature during the treatment beyond established tolerances causes the Nd:YAG laser system to adjust the laser power automatically.</p>\",\"PeriodicalId\":76133,\"journal\":{\"name\":\"Medical instrumentation\",\"volume\":\"21 4\",\"pages\":\"222-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical instrumentation","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of controlled Nd:YAG laser for medical applications.
Several medical fields are concerned with applications of thermal lasers such as neodymium-doped, yttrium aluminum garnet (Nd:YAG), argon, and CO2. However, quantification of the necrotic volume of Nd:YAG laser-induced damage is not possible at the time of treatment. Mathematic models and feedback control can help to optimize Nd:YAG laser treatments. We therefore formulated mathematic models for coagulation processes and developed an intelligent Nd:YAG laser system with closed-loop feedback control. Surface temperature evolution proved to be valuable data for real-time control of coagulation and ablation. Infrared thermometry provided the noncontact measurement of temperature. A computer stored the temperature data calculated by the mathematic model. Deviations of surface temperature during the treatment beyond established tolerances causes the Nd:YAG laser system to adjust the laser power automatically.