一种连续动态中心静脉压测量装置。

Medical instrumentation Pub Date : 1987-08-01
J C Buckey, R L Goble, C G Blomqvist
{"title":"一种连续动态中心静脉压测量装置。","authors":"J C Buckey,&nbsp;R L Goble,&nbsp;C G Blomqvist","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed a device for continuous direct measurement of human central venous pressure (CVP) during space flight. Normal resting CVP is typically in the range of 5-10 mmHg; in zero gravity, the expected changes are +/- 5 mmHg or less. A 1-mm Hg change in CVP can represent a substantial intravascular fluid shift. The device is small, battery powered, and designed to run for at least 24 hr. Pressure is measured in a saline solution-filled catheter inserted into a central vein. The transducer is placed in the axilla at the level of the catheter tip to offset hydrostatic gradients. A pump and an electronic system mount on the leg. This assembly provides a slow, continuous infusion of heparinized saline solution to maintain the patency of the catheter. The electronic system generates a digital display in mm Hg, an analog output, and a visible and audible alarm for excessive pressure. An air-filled syringe allows for a two-point calibration (zero and a positive pressure generated by measured compression of a known gas volume). A two-failure tolerant system minimizes electric shock hazards. Two latex diaphragms separate the saline solution from the transducer surface, and the electronic system and pump chamber are in separate enclosures. A clear polycarbonate case allows bubbles to be seen. The unit has been tested for pump function, temperature stability, drift, and accuracy. We conclude that this approach provides a unit with sufficient stability, accuracy, and temperature insensitivity for measuring ambulatory CVP for up to 28 hr. The design may be suitable for ambulatory measurement of other intravascular and intracardiac pressures.</p>","PeriodicalId":76133,"journal":{"name":"Medical instrumentation","volume":"21 4","pages":"238-43"},"PeriodicalIF":0.0000,"publicationDate":"1987-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new device for continuous ambulatory central venous pressure measurement.\",\"authors\":\"J C Buckey,&nbsp;R L Goble,&nbsp;C G Blomqvist\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have developed a device for continuous direct measurement of human central venous pressure (CVP) during space flight. Normal resting CVP is typically in the range of 5-10 mmHg; in zero gravity, the expected changes are +/- 5 mmHg or less. A 1-mm Hg change in CVP can represent a substantial intravascular fluid shift. The device is small, battery powered, and designed to run for at least 24 hr. Pressure is measured in a saline solution-filled catheter inserted into a central vein. The transducer is placed in the axilla at the level of the catheter tip to offset hydrostatic gradients. A pump and an electronic system mount on the leg. This assembly provides a slow, continuous infusion of heparinized saline solution to maintain the patency of the catheter. The electronic system generates a digital display in mm Hg, an analog output, and a visible and audible alarm for excessive pressure. An air-filled syringe allows for a two-point calibration (zero and a positive pressure generated by measured compression of a known gas volume). A two-failure tolerant system minimizes electric shock hazards. Two latex diaphragms separate the saline solution from the transducer surface, and the electronic system and pump chamber are in separate enclosures. A clear polycarbonate case allows bubbles to be seen. The unit has been tested for pump function, temperature stability, drift, and accuracy. We conclude that this approach provides a unit with sufficient stability, accuracy, and temperature insensitivity for measuring ambulatory CVP for up to 28 hr. The design may be suitable for ambulatory measurement of other intravascular and intracardiac pressures.</p>\",\"PeriodicalId\":76133,\"journal\":{\"name\":\"Medical instrumentation\",\"volume\":\"21 4\",\"pages\":\"238-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical instrumentation","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研制了一种在太空飞行中连续直接测量人体中心静脉压(CVP)的装置。正常的静息CVP通常在5-10毫米汞柱范围内;在零重力下,预期的变化是+/- 5mmhg或更小。CVP 1毫米汞柱的变化可以代表血管内液体的大量转移。该设备体积小,由电池供电,设计运行时间至少为24小时。通过插入中心静脉的充满生理盐水的导管测量血压。换能器被放置在导管尖端水平的腋窝中以抵消流体静力梯度。泵和电子系统安装在腿上。该装置提供缓慢、持续的输注肝素化生理盐水,以维持导管的通畅。电子系统产生以毫米汞柱为单位的数字显示,模拟输出和压力过高的可见和声音警报。充气注射器允许两点校准(零和正压力产生的测量已知气体体积的压缩)。双故障容忍系统最大限度地减少了触电危险。两个乳胶隔膜将盐水溶液与换能器表面分开,电子系统和泵室在单独的外壳中。透明的聚碳酸酯外壳可以看到气泡。该装置已经过泵功能,温度稳定性,漂移和精度测试。我们的结论是,这种方法提供了一个足够的稳定性,准确性和温度不敏感性的单位测量动态CVP长达28小时。该设计可能适用于其他血管内和心内压力的动态测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new device for continuous ambulatory central venous pressure measurement.

We have developed a device for continuous direct measurement of human central venous pressure (CVP) during space flight. Normal resting CVP is typically in the range of 5-10 mmHg; in zero gravity, the expected changes are +/- 5 mmHg or less. A 1-mm Hg change in CVP can represent a substantial intravascular fluid shift. The device is small, battery powered, and designed to run for at least 24 hr. Pressure is measured in a saline solution-filled catheter inserted into a central vein. The transducer is placed in the axilla at the level of the catheter tip to offset hydrostatic gradients. A pump and an electronic system mount on the leg. This assembly provides a slow, continuous infusion of heparinized saline solution to maintain the patency of the catheter. The electronic system generates a digital display in mm Hg, an analog output, and a visible and audible alarm for excessive pressure. An air-filled syringe allows for a two-point calibration (zero and a positive pressure generated by measured compression of a known gas volume). A two-failure tolerant system minimizes electric shock hazards. Two latex diaphragms separate the saline solution from the transducer surface, and the electronic system and pump chamber are in separate enclosures. A clear polycarbonate case allows bubbles to be seen. The unit has been tested for pump function, temperature stability, drift, and accuracy. We conclude that this approach provides a unit with sufficient stability, accuracy, and temperature insensitivity for measuring ambulatory CVP for up to 28 hr. The design may be suitable for ambulatory measurement of other intravascular and intracardiac pressures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical fitness in the elderly. Anesthesia delivery systems. Effects of using potassium adsorption filters on saline-filled and saline-removed methods for the removal of potassium from red blood cell solutions Plasma viscosity and whole blood viscosity as diagnostic tools of blood abnormalities by using simple syringe method A technique for measuring spatial distribution of electromagnetic fields created by radio-frequency coils in MRI scanners
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1