新生儿核黄素的光降解。

Federation proceedings Pub Date : 1987-04-01
T R Sisson
{"title":"新生儿核黄素的光降解。","authors":"T R Sisson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The biologically most important flavins are riboflavin and its related nucleotides, all highly sensitive to light. It is because of its photoreactivity and its presence in almost all body fluids and tissues that riboflavin assumes importance in phototherapy of neonatal jaundice. The absorption maxima of both bilirubin and riboflavin in the body are nearly identical: 445-450 (447) nm. In consequence, blue visible light will cause photoisomerization of bilirubin accompanied by photodegradation of riboflavin. This results in diminished erythrocyte glutathione reductase, which indicates generalized tissue riboflavin deficiency and red cell lysis. Single- and double-strand breaks in intracellular DNA have occurred with phototherapy. This light exposure of neonates may result also in alterations of bilirubin-albumin binding in the presence of both riboflavin and theophylline (the latter frequently given to prevent neonatal apnea). Many newborns, especially if premature, have low stores of riboflavin at birth. The absorptive capacity of premature infants for enteral riboflavin is likewise reduced. Consequently, inherently low stores and low intake of riboflavin plus phototherapy for neonatal jaundice will cause a deficiency of riboflavin at a critical period for the newborn. Supplementation to those infants most likely to develop riboflavin deficiency is useful, but dosage, time, and mode of administration to infants undergoing phototherapy must be carefully adjusted to avoid unwanted side effects.</p>","PeriodicalId":12183,"journal":{"name":"Federation proceedings","volume":"46 5","pages":"1883-5"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photodegradation of riboflavin in neonates.\",\"authors\":\"T R Sisson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biologically most important flavins are riboflavin and its related nucleotides, all highly sensitive to light. It is because of its photoreactivity and its presence in almost all body fluids and tissues that riboflavin assumes importance in phototherapy of neonatal jaundice. The absorption maxima of both bilirubin and riboflavin in the body are nearly identical: 445-450 (447) nm. In consequence, blue visible light will cause photoisomerization of bilirubin accompanied by photodegradation of riboflavin. This results in diminished erythrocyte glutathione reductase, which indicates generalized tissue riboflavin deficiency and red cell lysis. Single- and double-strand breaks in intracellular DNA have occurred with phototherapy. This light exposure of neonates may result also in alterations of bilirubin-albumin binding in the presence of both riboflavin and theophylline (the latter frequently given to prevent neonatal apnea). Many newborns, especially if premature, have low stores of riboflavin at birth. The absorptive capacity of premature infants for enteral riboflavin is likewise reduced. Consequently, inherently low stores and low intake of riboflavin plus phototherapy for neonatal jaundice will cause a deficiency of riboflavin at a critical period for the newborn. Supplementation to those infants most likely to develop riboflavin deficiency is useful, but dosage, time, and mode of administration to infants undergoing phototherapy must be carefully adjusted to avoid unwanted side effects.</p>\",\"PeriodicalId\":12183,\"journal\":{\"name\":\"Federation proceedings\",\"volume\":\"46 5\",\"pages\":\"1883-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Federation proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federation proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物学上最重要的黄素是核黄素及其相关核苷酸,它们都对光高度敏感。正是由于核黄素的光反应性和存在于几乎所有体液和组织中,核黄素在新生儿黄疸的光疗中发挥了重要作用。胆红素和核黄素在体内的吸收最大值几乎相同:445-450 (447)nm。因此,蓝色可见光会引起胆红素的光异构化,并伴有核黄素的光降解。这导致红细胞谷胱甘肽还原酶减少,这表明广泛的组织核黄素缺乏和红细胞溶解。细胞内DNA单链和双链断裂在光疗中发生。在核黄素和茶碱(后者经常用于预防新生儿呼吸暂停)存在的情况下,新生儿的这种光照也可能导致胆红素-白蛋白结合的改变。许多新生儿,尤其是早产儿,在出生时核黄素的含量很低。早产儿对肠内核黄素的吸收能力也同样降低。因此,核黄素固有的低储存和低摄入加上新生儿黄疸的光疗将导致新生儿在关键时期缺乏核黄素。对那些最有可能发生核黄素缺乏症的婴儿进行补充是有用的,但对接受光疗的婴儿进行剂量、时间和给药方式必须仔细调整,以避免不必要的副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photodegradation of riboflavin in neonates.

The biologically most important flavins are riboflavin and its related nucleotides, all highly sensitive to light. It is because of its photoreactivity and its presence in almost all body fluids and tissues that riboflavin assumes importance in phototherapy of neonatal jaundice. The absorption maxima of both bilirubin and riboflavin in the body are nearly identical: 445-450 (447) nm. In consequence, blue visible light will cause photoisomerization of bilirubin accompanied by photodegradation of riboflavin. This results in diminished erythrocyte glutathione reductase, which indicates generalized tissue riboflavin deficiency and red cell lysis. Single- and double-strand breaks in intracellular DNA have occurred with phototherapy. This light exposure of neonates may result also in alterations of bilirubin-albumin binding in the presence of both riboflavin and theophylline (the latter frequently given to prevent neonatal apnea). Many newborns, especially if premature, have low stores of riboflavin at birth. The absorptive capacity of premature infants for enteral riboflavin is likewise reduced. Consequently, inherently low stores and low intake of riboflavin plus phototherapy for neonatal jaundice will cause a deficiency of riboflavin at a critical period for the newborn. Supplementation to those infants most likely to develop riboflavin deficiency is useful, but dosage, time, and mode of administration to infants undergoing phototherapy must be carefully adjusted to avoid unwanted side effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beriberi. Conjugation—Deconjugation Reactions in Drug Metabolism and Toxicity Opioid regulation of food intake and body weight in humans. Localization of the functional sites on the alpha chain of acetylcholine receptor. Immunoquantitation of cytochrome b5 and methylcholanthrene-induced cytochromes P-450.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1