吗啡调节肽的神经解剖学。

Medical biology Pub Date : 1987-01-01
P Panula, L Kivipelto, O Nieminen, E A Majane, H Y Yang
{"title":"吗啡调节肽的神经解剖学。","authors":"P Panula,&nbsp;L Kivipelto,&nbsp;O Nieminen,&nbsp;E A Majane,&nbsp;H Y Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Antisera against two mammalian peptides related to the molluscan cardioexcitatory peptide Phe-Met-Arg-Phe-NH2 were used to locate immunoreactive neurons in the rat brain, nerve fibres and terminals in the spinal cord, sympathetic ganglion cells and adrenal chromaffin cells. Immunoreactivity for the newly characterised octa- and octadecapeptide was detected in nerve cell bodies in the hypothalamic area, including parts of the dorsomedial, periventricular and paraventricular nuclei, and in the nucleus tractus solitarii. Nerve terminals in the superficial laminae of the spinal cord were also immunoreactive for these peptides, while the sensory ganglia were nonreactive. Some principal ganglion cells in the superior cervical ganglia exhibited bright immunofluorescence for the peptides, and a few adrenal medullary cells were immunoreactive. The presence of these peptides in the substantia gelatinosa of the spinal cord suggests that they may be involved in sensory neurotransmission, especially in the mechanisms mediating pain. In the hypothalamo-hypophysial system these peptides may be involved in the regulation of hormonal systems. They may also act as co-transmitters in the sympathetic nervous system.</p>","PeriodicalId":18313,"journal":{"name":"Medical biology","volume":"65 2-3","pages":"127-35"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroanatomy of morphine-modulating peptides.\",\"authors\":\"P Panula,&nbsp;L Kivipelto,&nbsp;O Nieminen,&nbsp;E A Majane,&nbsp;H Y Yang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antisera against two mammalian peptides related to the molluscan cardioexcitatory peptide Phe-Met-Arg-Phe-NH2 were used to locate immunoreactive neurons in the rat brain, nerve fibres and terminals in the spinal cord, sympathetic ganglion cells and adrenal chromaffin cells. Immunoreactivity for the newly characterised octa- and octadecapeptide was detected in nerve cell bodies in the hypothalamic area, including parts of the dorsomedial, periventricular and paraventricular nuclei, and in the nucleus tractus solitarii. Nerve terminals in the superficial laminae of the spinal cord were also immunoreactive for these peptides, while the sensory ganglia were nonreactive. Some principal ganglion cells in the superior cervical ganglia exhibited bright immunofluorescence for the peptides, and a few adrenal medullary cells were immunoreactive. The presence of these peptides in the substantia gelatinosa of the spinal cord suggests that they may be involved in sensory neurotransmission, especially in the mechanisms mediating pain. In the hypothalamo-hypophysial system these peptides may be involved in the regulation of hormonal systems. They may also act as co-transmitters in the sympathetic nervous system.</p>\",\"PeriodicalId\":18313,\"journal\":{\"name\":\"Medical biology\",\"volume\":\"65 2-3\",\"pages\":\"127-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对两种与软体动物心脏兴奋肽(ph - met - arg - ph - nh2)相关的哺乳动物肽的抗血清用于定位大鼠脑中的免疫反应神经元、脊髓的神经纤维和末梢、交感神经节细胞和肾上腺染色质细胞。在下丘脑区域的神经细胞体中检测到新表征的八肽和八肽的免疫反应性,包括背内侧核、室周核和室旁核的部分,以及孤束核。脊髓浅层的神经末梢对这些肽也有免疫反应,而感觉神经节则无反应。颈上神经节的一些主要神经节细胞对肽表现出明亮的免疫荧光,少数肾上腺髓质细胞表现出免疫反应。这些肽在脊髓明胶质中的存在表明它们可能参与感觉神经传递,特别是介导疼痛的机制。在下丘脑-垂体系统中,这些肽可能参与调节激素系统。它们也可能作为交感神经系统的共同递质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuroanatomy of morphine-modulating peptides.

Antisera against two mammalian peptides related to the molluscan cardioexcitatory peptide Phe-Met-Arg-Phe-NH2 were used to locate immunoreactive neurons in the rat brain, nerve fibres and terminals in the spinal cord, sympathetic ganglion cells and adrenal chromaffin cells. Immunoreactivity for the newly characterised octa- and octadecapeptide was detected in nerve cell bodies in the hypothalamic area, including parts of the dorsomedial, periventricular and paraventricular nuclei, and in the nucleus tractus solitarii. Nerve terminals in the superficial laminae of the spinal cord were also immunoreactive for these peptides, while the sensory ganglia were nonreactive. Some principal ganglion cells in the superior cervical ganglia exhibited bright immunofluorescence for the peptides, and a few adrenal medullary cells were immunoreactive. The presence of these peptides in the substantia gelatinosa of the spinal cord suggests that they may be involved in sensory neurotransmission, especially in the mechanisms mediating pain. In the hypothalamo-hypophysial system these peptides may be involved in the regulation of hormonal systems. They may also act as co-transmitters in the sympathetic nervous system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Growth inhibitory polypeptides in the regulation of cell proliferation. Relationship between tryptophan and serotonin concentrations in postmortem human brain. Peptides and neurotransmission in the central nervous system. GABA and affective disorders. Chemical neurotransmission in the parkinsonian brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1