[肺音流速评估方法]。

G Charbonneau, M Sudraud, G Soufflet
{"title":"[肺音流速评估方法]。","authors":"G Charbonneau,&nbsp;M Sudraud,&nbsp;G Soufflet","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We recorded the lung sound and flow rate from six normal subjects (3 male and 3 female). Sound was picked up at the trachea with a sensitive microphone held in a small probe. Flow rate was measured at the mouth using a Fleisch No. 3 pneumotachograph. Subjects were made to breath for 15 s, with an increasing peak flow rate starting from apnoea to around 2 l.s-1. Both sound and flow rate were directly digitized (i.e. without temporary analogic recording) at a sampling rate of 5120 Hz. Sound and flow were then divided in 128-sample blocks. For each block, the frequency spectrum was computed using the fast Fourier transform. Frequency spectrum depends on the flow rate in many ways. We computed the following formula on each spectrum: D = K.Fmean/(1 + A/Amean) where K and A are constant, Fmean and Amean are respectively the mean frequency and the mean amplitude of the spectrum computed on a 128-sample block. D may be considered as an evaluation of the flow rate every 50 ms. Plotted versus the measured values of the flow rate, D showed a linear relationship. This feature can be used as an almost instantaneous evaluation of the flow rate, or it is possible to compute the mean of D over consecutive 128-sample blocks. This has lead us to calculate the mean of the flow rate over 100, 200, ..., 800 ms. Of course, the longer the time window, the better the correlation between computed flow and real value. The values obtained for this correlation varied between 0.79 and 0.94.</p>","PeriodicalId":75642,"journal":{"name":"Bulletin europeen de physiopathologie respiratoire","volume":"23 3","pages":"265-70"},"PeriodicalIF":0.0000,"publicationDate":"1987-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Method for the evaluation of flow rate from pulmonary sounds].\",\"authors\":\"G Charbonneau,&nbsp;M Sudraud,&nbsp;G Soufflet\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We recorded the lung sound and flow rate from six normal subjects (3 male and 3 female). Sound was picked up at the trachea with a sensitive microphone held in a small probe. Flow rate was measured at the mouth using a Fleisch No. 3 pneumotachograph. Subjects were made to breath for 15 s, with an increasing peak flow rate starting from apnoea to around 2 l.s-1. Both sound and flow rate were directly digitized (i.e. without temporary analogic recording) at a sampling rate of 5120 Hz. Sound and flow were then divided in 128-sample blocks. For each block, the frequency spectrum was computed using the fast Fourier transform. Frequency spectrum depends on the flow rate in many ways. We computed the following formula on each spectrum: D = K.Fmean/(1 + A/Amean) where K and A are constant, Fmean and Amean are respectively the mean frequency and the mean amplitude of the spectrum computed on a 128-sample block. D may be considered as an evaluation of the flow rate every 50 ms. Plotted versus the measured values of the flow rate, D showed a linear relationship. This feature can be used as an almost instantaneous evaluation of the flow rate, or it is possible to compute the mean of D over consecutive 128-sample blocks. This has lead us to calculate the mean of the flow rate over 100, 200, ..., 800 ms. Of course, the longer the time window, the better the correlation between computed flow and real value. The values obtained for this correlation varied between 0.79 and 0.94.</p>\",\"PeriodicalId\":75642,\"journal\":{\"name\":\"Bulletin europeen de physiopathologie respiratoire\",\"volume\":\"23 3\",\"pages\":\"265-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin europeen de physiopathologie respiratoire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin europeen de physiopathologie respiratoire","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们记录了6名正常受试者(男3名,女3名)的肺音和肺流速。在气管处,用一个小探针夹着一个灵敏的麦克风来采集声音。使用弗莱施3号气记录仪测量口部流速。受试者被要求呼吸15秒,峰值流速从呼吸暂停开始增加到约2l -1。声音和流量都以5120 Hz的采样率直接数字化(即没有临时模拟记录)。然后将声音和流分为128个样本块。对于每个块,使用快速傅里叶变换计算频谱。频谱在很多方面取决于流量。我们对每个频谱计算如下公式:D = K.Fmean/(1 + A/Amean),其中K和A为常数,Fmean和Amean分别是在128个样本块上计算的频谱的平均频率和平均幅度。D可以被认为是每50毫秒流速的评估值。与流量的测量值绘制,D显示出线性关系。该特征可以用作流量的几乎瞬时评估,或者可以计算连续128个样本块上D的平均值。这使我们可以计算出100、200、…800名女士。当然,时间窗口越长,计算流量与实际值的相关性越好。这种相关性的值在0.79和0.94之间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Method for the evaluation of flow rate from pulmonary sounds].

We recorded the lung sound and flow rate from six normal subjects (3 male and 3 female). Sound was picked up at the trachea with a sensitive microphone held in a small probe. Flow rate was measured at the mouth using a Fleisch No. 3 pneumotachograph. Subjects were made to breath for 15 s, with an increasing peak flow rate starting from apnoea to around 2 l.s-1. Both sound and flow rate were directly digitized (i.e. without temporary analogic recording) at a sampling rate of 5120 Hz. Sound and flow were then divided in 128-sample blocks. For each block, the frequency spectrum was computed using the fast Fourier transform. Frequency spectrum depends on the flow rate in many ways. We computed the following formula on each spectrum: D = K.Fmean/(1 + A/Amean) where K and A are constant, Fmean and Amean are respectively the mean frequency and the mean amplitude of the spectrum computed on a 128-sample block. D may be considered as an evaluation of the flow rate every 50 ms. Plotted versus the measured values of the flow rate, D showed a linear relationship. This feature can be used as an almost instantaneous evaluation of the flow rate, or it is possible to compute the mean of D over consecutive 128-sample blocks. This has lead us to calculate the mean of the flow rate over 100, 200, ..., 800 ms. Of course, the longer the time window, the better the correlation between computed flow and real value. The values obtained for this correlation varied between 0.79 and 0.94.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Status Asthmaticus The development of an animal model for TDI asthma. The role of neuropeptides as neurotransmitters of non-adrenergic, non-cholinergic nerves in bronchial asthma. Epidemiological measurement of bronchial responsiveness in polyurethane workers. Late asthmatic reactions and changes in histamine responsiveness provoked by occupational agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1