{"title":"生物人工肾:具有肾上皮细胞加工的超滤装置的研究进展。","authors":"P Aebischer, T K Ip, G Panol, P M Galletti","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The combination of an ultrafiltration device with an exchanger whose semipermeable hollow fibres are covered with renal epithelial cells is proposed as a design for a bioartificial kidney. We first demonstrated that continuous ultrafiltration can be maintained for relatively long periods in the absence of anticoagulation. As a second step, we report here the feasibility of attaching and growing two lines of kidney epithelial cells (MDCK and LLC-PK1) on two different semipermeable materials, an acrylic copolymer and a polysulphone. Cells seeded on acrylic copolymer hollow fibres reach confluence within three weeks. Depending on the chemical and/or physical properties of the polymer, the cells show distinct differentiated morphology, which may influence their ability to perform specialized tasks.</p>","PeriodicalId":77869,"journal":{"name":"Life support systems : the journal of the European Society for Artificial Organs","volume":"5 2","pages":"159-68"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The bioartificial kidney: progress towards an ultrafiltration device with renal epithelial cells processing.\",\"authors\":\"P Aebischer, T K Ip, G Panol, P M Galletti\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The combination of an ultrafiltration device with an exchanger whose semipermeable hollow fibres are covered with renal epithelial cells is proposed as a design for a bioartificial kidney. We first demonstrated that continuous ultrafiltration can be maintained for relatively long periods in the absence of anticoagulation. As a second step, we report here the feasibility of attaching and growing two lines of kidney epithelial cells (MDCK and LLC-PK1) on two different semipermeable materials, an acrylic copolymer and a polysulphone. Cells seeded on acrylic copolymer hollow fibres reach confluence within three weeks. Depending on the chemical and/or physical properties of the polymer, the cells show distinct differentiated morphology, which may influence their ability to perform specialized tasks.</p>\",\"PeriodicalId\":77869,\"journal\":{\"name\":\"Life support systems : the journal of the European Society for Artificial Organs\",\"volume\":\"5 2\",\"pages\":\"159-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life support systems : the journal of the European Society for Artificial Organs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life support systems : the journal of the European Society for Artificial Organs","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The bioartificial kidney: progress towards an ultrafiltration device with renal epithelial cells processing.
The combination of an ultrafiltration device with an exchanger whose semipermeable hollow fibres are covered with renal epithelial cells is proposed as a design for a bioartificial kidney. We first demonstrated that continuous ultrafiltration can be maintained for relatively long periods in the absence of anticoagulation. As a second step, we report here the feasibility of attaching and growing two lines of kidney epithelial cells (MDCK and LLC-PK1) on two different semipermeable materials, an acrylic copolymer and a polysulphone. Cells seeded on acrylic copolymer hollow fibres reach confluence within three weeks. Depending on the chemical and/or physical properties of the polymer, the cells show distinct differentiated morphology, which may influence their ability to perform specialized tasks.