同种异体神经移植对小鼠神经再生的影响。

T Osawa, C Ide, K Tohyama
{"title":"同种异体神经移植对小鼠神经再生的影响。","authors":"T Osawa,&nbsp;C Ide,&nbsp;K Tohyama","doi":"10.1679/aohc.49.69","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to examine whether the basal laminae of Schwann cells in allografts could survive immunological rejection and serve as a conduit for regenerating nerves, as in the case of autogenic nerve grafts. Allografts of nerves were carried out using sciatic nerves of mice after the grafts had been repetitively frozen to kill their Schwann cells. Two mouse strains, C57BL/6N and C3H/HeN, were used, as they are known to differ in major histocompatibility complex. The mid-portion of the grafted nerve segments was examined by electron microscopy. In addition, the toe pad skin and lumbrical muscles were examined for determining whether regenerating nerves reinnervate sensory end organs and motor endplates. The process of nerve regeneration in the allograft was the same as that seen in the autograft. Cells in the graft disintegrated into cell debris and were phagocytized by macrophages, whereas the basal laminae of Schwann cells were not removed by macrophages, remaining in the form of tubes or scaffolds. Regenerating nerve fibers grew out through such basal lamina scaffolds, keeping in contact with the inner surface. Digital sensory corpuscles and motor endplates of the operated side were well reinnervated. The results indicate that the basal laminae of Schwann cells of the allograft may survive and serve as a conduit for regenerating axons in the same way as in the case of an autograft.</p>","PeriodicalId":8387,"journal":{"name":"Archivum histologicum Japonicum = Nihon soshikigaku kiroku","volume":"49 1","pages":"69-81"},"PeriodicalIF":0.0000,"publicationDate":"1986-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1679/aohc.49.69","citationCount":"35","resultStr":"{\"title\":\"Nerve regeneration through allogenic nerve grafts in mice.\",\"authors\":\"T Osawa,&nbsp;C Ide,&nbsp;K Tohyama\",\"doi\":\"10.1679/aohc.49.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to examine whether the basal laminae of Schwann cells in allografts could survive immunological rejection and serve as a conduit for regenerating nerves, as in the case of autogenic nerve grafts. Allografts of nerves were carried out using sciatic nerves of mice after the grafts had been repetitively frozen to kill their Schwann cells. Two mouse strains, C57BL/6N and C3H/HeN, were used, as they are known to differ in major histocompatibility complex. The mid-portion of the grafted nerve segments was examined by electron microscopy. In addition, the toe pad skin and lumbrical muscles were examined for determining whether regenerating nerves reinnervate sensory end organs and motor endplates. The process of nerve regeneration in the allograft was the same as that seen in the autograft. Cells in the graft disintegrated into cell debris and were phagocytized by macrophages, whereas the basal laminae of Schwann cells were not removed by macrophages, remaining in the form of tubes or scaffolds. Regenerating nerve fibers grew out through such basal lamina scaffolds, keeping in contact with the inner surface. Digital sensory corpuscles and motor endplates of the operated side were well reinnervated. The results indicate that the basal laminae of Schwann cells of the allograft may survive and serve as a conduit for regenerating axons in the same way as in the case of an autograft.</p>\",\"PeriodicalId\":8387,\"journal\":{\"name\":\"Archivum histologicum Japonicum = Nihon soshikigaku kiroku\",\"volume\":\"49 1\",\"pages\":\"69-81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1679/aohc.49.69\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum histologicum Japonicum = Nihon soshikigaku kiroku\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1679/aohc.49.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum histologicum Japonicum = Nihon soshikigaku kiroku","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1679/aohc.49.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本研究的目的是研究同种异体移植物中的雪旺细胞基底膜是否能像自体神经移植物一样,在免疫排斥反应中存活下来,并作为神经再生的管道。将小鼠坐骨神经反复冷冻,杀死小鼠的雪旺细胞后,进行同种异体神经移植。采用C57BL/6N和C3H/HeN两种小鼠品系,因为已知它们在主要组织相容性复合体上存在差异。电镜观察移植神经中段。此外,还检查了趾垫皮肤和蚓状肌,以确定再生神经是否重新支配感觉末端器官和运动终板。同种异体移植物的神经再生过程与自体移植物相同。移植物中的细胞分解成细胞碎片并被巨噬细胞吞噬,而雪旺细胞的基层未被巨噬细胞移除,以管状或支架的形式存在。再生的神经纤维通过这种基底膜支架生长出来,并与内表面保持接触。手术侧指感小体和运动终板神经恢复良好。结果表明,同种异体移植物的雪旺细胞基底层可以存活,并以与自体移植物相同的方式作为轴突再生的管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nerve regeneration through allogenic nerve grafts in mice.

The purpose of this study was to examine whether the basal laminae of Schwann cells in allografts could survive immunological rejection and serve as a conduit for regenerating nerves, as in the case of autogenic nerve grafts. Allografts of nerves were carried out using sciatic nerves of mice after the grafts had been repetitively frozen to kill their Schwann cells. Two mouse strains, C57BL/6N and C3H/HeN, were used, as they are known to differ in major histocompatibility complex. The mid-portion of the grafted nerve segments was examined by electron microscopy. In addition, the toe pad skin and lumbrical muscles were examined for determining whether regenerating nerves reinnervate sensory end organs and motor endplates. The process of nerve regeneration in the allograft was the same as that seen in the autograft. Cells in the graft disintegrated into cell debris and were phagocytized by macrophages, whereas the basal laminae of Schwann cells were not removed by macrophages, remaining in the form of tubes or scaffolds. Regenerating nerve fibers grew out through such basal lamina scaffolds, keeping in contact with the inner surface. Digital sensory corpuscles and motor endplates of the operated side were well reinnervated. The results indicate that the basal laminae of Schwann cells of the allograft may survive and serve as a conduit for regenerating axons in the same way as in the case of an autograft.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lysine-mediated tissue osmication in combination with a tannin-osmium conductive staining method for non-coated scanning electron microscopy of biological specimens. Histochemical visualization of lymphatic capillaries in the rat: a comparison of methods demonstrated at the posterior pharyngeal surface. Desmin distribution in the cardiac outflow tract of the chick embryo during aortico-pulmonary septation. Three-dimensional organization of the connective tissue fibers of the human pancreas: a scanning electron microscopic study of NaOH treated-tissues. Blood vascular architecture of the rat parathyroid glands: a scanning electron microscopic study of corrosion casts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1