成年大鼠背根神经节原代感觉神经元的增殖及坐骨神经切断术后逆行细胞损失动力学。

M Devor, R Govrin-Lippmann, I Frank, P Raber
{"title":"成年大鼠背根神经节原代感觉神经元的增殖及坐骨神经切断术后逆行细胞损失动力学。","authors":"M Devor,&nbsp;R Govrin-Lippmann,&nbsp;I Frank,&nbsp;P Raber","doi":"10.3109/07367228509144581","DOIUrl":null,"url":null,"abstract":"<p><p>This study was aimed at measuring the kinetics of retrograde death among primary sensory neurons axotomized by transection of the ipsilateral sciatic nerve in adult rats. Using electrophysiological and retrograde transport methods, we first determined that most sciatic afferents enter the spinal cord along the L4 and L5 dorsal roots (DRs), and that about 54% of the cells in the L4 and L5 dorsal root ganglia (DRGs) project an axon into the sciatic nerve. Knowing this value, we could then calculate the rate of loss of axotomized neurons from the overall rate of neuron loss in the DRGs at different times after the lesion. Following unilateral sciatic neurectomy, we found a steady falloff in the ratio of DRG neurons on the operated versus the intact control sides in cresyl-violet-stained serial paraffin sections. We were surprised to note, however, that on the control side there was a steady increase in the cell count with age. Counts done on a series of unoperated rats of various ages confirmed this natural increase. Overall, new neurons accrete at an average rate of 18.1 cells per day to the combined L4 and L5 DRGs, nearly doubling their numbers during the adult life of the animal. The new cells add mostly to the small-diameter neuronal compartment. Evidence from neonatally operated rats indicates that the decline in the ratio of neurons in operated versus control DRGs following sciatic nerve section in the adult results more from a halt in the accretion of new neurons to the sciatic compartment than from frank cell death. From our data, we calculate that the loss of axotomized neurons occurs at a rate of only about 8% per 100 postoperative days.</p>","PeriodicalId":77800,"journal":{"name":"Somatosensory research","volume":"3 2","pages":"139-67"},"PeriodicalIF":0.0000,"publicationDate":"1985-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/07367228509144581","citationCount":"209","resultStr":"{\"title\":\"Proliferation of primary sensory neurons in adult rat dorsal root ganglion and the kinetics of retrograde cell loss after sciatic nerve section.\",\"authors\":\"M Devor,&nbsp;R Govrin-Lippmann,&nbsp;I Frank,&nbsp;P Raber\",\"doi\":\"10.3109/07367228509144581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study was aimed at measuring the kinetics of retrograde death among primary sensory neurons axotomized by transection of the ipsilateral sciatic nerve in adult rats. Using electrophysiological and retrograde transport methods, we first determined that most sciatic afferents enter the spinal cord along the L4 and L5 dorsal roots (DRs), and that about 54% of the cells in the L4 and L5 dorsal root ganglia (DRGs) project an axon into the sciatic nerve. Knowing this value, we could then calculate the rate of loss of axotomized neurons from the overall rate of neuron loss in the DRGs at different times after the lesion. Following unilateral sciatic neurectomy, we found a steady falloff in the ratio of DRG neurons on the operated versus the intact control sides in cresyl-violet-stained serial paraffin sections. We were surprised to note, however, that on the control side there was a steady increase in the cell count with age. Counts done on a series of unoperated rats of various ages confirmed this natural increase. Overall, new neurons accrete at an average rate of 18.1 cells per day to the combined L4 and L5 DRGs, nearly doubling their numbers during the adult life of the animal. The new cells add mostly to the small-diameter neuronal compartment. Evidence from neonatally operated rats indicates that the decline in the ratio of neurons in operated versus control DRGs following sciatic nerve section in the adult results more from a halt in the accretion of new neurons to the sciatic compartment than from frank cell death. From our data, we calculate that the loss of axotomized neurons occurs at a rate of only about 8% per 100 postoperative days.</p>\",\"PeriodicalId\":77800,\"journal\":{\"name\":\"Somatosensory research\",\"volume\":\"3 2\",\"pages\":\"139-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/07367228509144581\",\"citationCount\":\"209\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Somatosensory research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/07367228509144581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatosensory research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/07367228509144581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 209

摘要

本研究旨在测定横断同侧坐骨神经后大鼠初级感觉神经元逆行死亡的动力学。利用电生理和逆行运输方法,我们首先确定了大多数坐骨传入神经沿L4和L5背根(DRs)进入脊髓,并且在L4和L5背根神经节(DRGs)中约54%的细胞向坐骨神经投射轴突。知道了这个值,我们就可以从损伤后不同时间DRGs的整体神经元丢失率中计算出被戕害神经元的丢失率。在单侧坐骨神经切除术后,我们发现在甲酚紫染色的连续石蜡切片中,手术侧与完整对照侧的DRG神经元比例稳定下降。然而,我们惊讶地注意到,在对照组,随着年龄的增长,细胞数量稳步增加。对一系列不同年龄的未手术大鼠进行的计数证实了这种自然增长。总的来说,新的神经元以平均每天18.1个细胞的速度增加到L4和L5 DRGs,在动物的成年生活中,它们的数量几乎翻了一番。这些新细胞大多生长在直径较小的神经元室中。来自新生手术大鼠的证据表明,成年大鼠坐骨神经切断术后,手术后DRGs中神经元比例的下降更多是由于新神经元向坐骨隔区聚集的停止,而不是直接细胞死亡。根据我们的数据,我们计算出,每100天术后,axocut神经元的丢失率仅为8%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proliferation of primary sensory neurons in adult rat dorsal root ganglion and the kinetics of retrograde cell loss after sciatic nerve section.

This study was aimed at measuring the kinetics of retrograde death among primary sensory neurons axotomized by transection of the ipsilateral sciatic nerve in adult rats. Using electrophysiological and retrograde transport methods, we first determined that most sciatic afferents enter the spinal cord along the L4 and L5 dorsal roots (DRs), and that about 54% of the cells in the L4 and L5 dorsal root ganglia (DRGs) project an axon into the sciatic nerve. Knowing this value, we could then calculate the rate of loss of axotomized neurons from the overall rate of neuron loss in the DRGs at different times after the lesion. Following unilateral sciatic neurectomy, we found a steady falloff in the ratio of DRG neurons on the operated versus the intact control sides in cresyl-violet-stained serial paraffin sections. We were surprised to note, however, that on the control side there was a steady increase in the cell count with age. Counts done on a series of unoperated rats of various ages confirmed this natural increase. Overall, new neurons accrete at an average rate of 18.1 cells per day to the combined L4 and L5 DRGs, nearly doubling their numbers during the adult life of the animal. The new cells add mostly to the small-diameter neuronal compartment. Evidence from neonatally operated rats indicates that the decline in the ratio of neurons in operated versus control DRGs following sciatic nerve section in the adult results more from a halt in the accretion of new neurons to the sciatic compartment than from frank cell death. From our data, we calculate that the loss of axotomized neurons occurs at a rate of only about 8% per 100 postoperative days.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GABA distribution in a pain-modulating zone of trigeminal subnucleus interpolaris. Acid phosphatase as a selective marker for a class of small sensory ganglion cells in several mammals: spinal cord distribution, histochemical properties, and relation to fluoride-resistant acid phosphatase (FRAP) of rodents. The intrinsic organization of the ventroposterolateral nucleus and related reticular thalamic nucleus of the rat: a double-labeling ultrastructural investigation with gamma-aminobutyric acid immunogold staining and lectin-conjugated horseradish peroxidase. Spinal and trigeminal projections to the parabrachial nucleus in the rat: electron-microscopic evidence of a spino-ponto-amygdalian somatosensory pathway. The fiber caliber of 5-HT immunoreactive axons in the dorsolateral funiculus of the spinal cord of the rat and cat.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1