方差分析同时成分分析:教程回顾

IF 2.5 Q1 Chemistry Analytica Chimica Acta: X Pub Date : 2020-11-01 DOI:10.1016/j.acax.2020.100061
Carlo Bertinetto , Jasper Engel , Jeroen Jansen
{"title":"方差分析同时成分分析:教程回顾","authors":"Carlo Bertinetto ,&nbsp;Jasper Engel ,&nbsp;Jeroen Jansen","doi":"10.1016/j.acax.2020.100061","DOIUrl":null,"url":null,"abstract":"<div><p>When analyzing experimental chemical data, it is often necessary to incorporate the structure of the study design into the chemometric/statistical models to effectively address the research questions of interest. ANOVA-Simultaneous Component Analysis (ASCA) is one of the most prominent methods to include such information in the quantitative analysis of multivariate data, especially when the number of variables is large. This tutorial review intends to explain in a simple way how ASCA works, how it is operated and how to correctly interpret ASCA results, with approachable mathematical and visual descriptions. Two examples are given: the first, a simulated chemical reaction, serves to illustrate the ASCA steps and the second, from a real chemical ecology data set, the interpretation of results. An overview of methods closely related to ASCA is also provided, pointing out their differences and scope, to give a wide-ranging picture of the available options to build multivariate models that take experimental design into account.</p></div>","PeriodicalId":241,"journal":{"name":"Analytica Chimica Acta: X","volume":"6 ","pages":"Article 100061"},"PeriodicalIF":2.5000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.acax.2020.100061","citationCount":"58","resultStr":"{\"title\":\"ANOVA simultaneous component analysis: A tutorial review\",\"authors\":\"Carlo Bertinetto ,&nbsp;Jasper Engel ,&nbsp;Jeroen Jansen\",\"doi\":\"10.1016/j.acax.2020.100061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When analyzing experimental chemical data, it is often necessary to incorporate the structure of the study design into the chemometric/statistical models to effectively address the research questions of interest. ANOVA-Simultaneous Component Analysis (ASCA) is one of the most prominent methods to include such information in the quantitative analysis of multivariate data, especially when the number of variables is large. This tutorial review intends to explain in a simple way how ASCA works, how it is operated and how to correctly interpret ASCA results, with approachable mathematical and visual descriptions. Two examples are given: the first, a simulated chemical reaction, serves to illustrate the ASCA steps and the second, from a real chemical ecology data set, the interpretation of results. An overview of methods closely related to ASCA is also provided, pointing out their differences and scope, to give a wide-ranging picture of the available options to build multivariate models that take experimental design into account.</p></div>\",\"PeriodicalId\":241,\"journal\":{\"name\":\"Analytica Chimica Acta: X\",\"volume\":\"6 \",\"pages\":\"Article 100061\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.acax.2020.100061\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica Chimica Acta: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590134620300232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590134620300232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 58

摘要

在分析实验化学数据时,通常需要将研究设计的结构纳入化学计量学/统计模型中,以有效地解决感兴趣的研究问题。ANOVA-Simultaneous Component Analysis (ASCA)是在多变量数据的定量分析中包含这些信息的最突出的方法之一,特别是当变量数量很大时。本教程复习旨在以简单的方式解释ASCA如何工作,如何操作以及如何正确解释ASCA结果,并提供平易近人的数学和视觉描述。给出了两个例子:第一个是模拟的化学反应,用于说明ASCA的步骤;第二个是来自真实化学生态学数据集的结果解释。还提供了与ASCA密切相关的方法概述,指出了它们的差异和范围,以提供一个广泛的可用选项,以建立考虑实验设计的多变量模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANOVA simultaneous component analysis: A tutorial review

When analyzing experimental chemical data, it is often necessary to incorporate the structure of the study design into the chemometric/statistical models to effectively address the research questions of interest. ANOVA-Simultaneous Component Analysis (ASCA) is one of the most prominent methods to include such information in the quantitative analysis of multivariate data, especially when the number of variables is large. This tutorial review intends to explain in a simple way how ASCA works, how it is operated and how to correctly interpret ASCA results, with approachable mathematical and visual descriptions. Two examples are given: the first, a simulated chemical reaction, serves to illustrate the ASCA steps and the second, from a real chemical ecology data set, the interpretation of results. An overview of methods closely related to ASCA is also provided, pointing out their differences and scope, to give a wide-ranging picture of the available options to build multivariate models that take experimental design into account.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytica Chimica Acta: X
Analytica Chimica Acta: X Chemistry-Analytical Chemistry
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊最新文献
Editorial Board Outside Front Cover Reconciling the pHe measurements of bioethanol: pHabs measurements of buffered 50-50 wt% water-ethanol mixtures Outside Front Cover Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1